18 research outputs found

    Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice

    Get PDF
    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (

    Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice [Mus Musculus]

    No full text
    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on hepatic lipid metabolism and detailed serum lipid profiles, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to measure quantitatively serum lipid profiles and whole genome microarray analysis was used to identify the responsible mechanisms in liver. There were no significant differences found in mean body weight, energy intake and hepatic lipid accumulation between the quercetin and control group. In serum of quercetin-fed mice, TG levels were decreased with 15%, poly unsaturated fatty acids (PUFA) were increased with 14% and saturated fatty acids were decreased. Palmitic acid, oleic acid, and linoleic acid were all decreased in quercetin-fed mice by 9-15%. Both palmitic acid and oleic acid can be oxidized by omega-oxidation. Indeed, gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially omega-oxidation. At the gene level, this was reflected by the up regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, Cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were also up regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid omega-oxidation and lowered corresponding circulating lipid levels, a process that may involve Por and Car, and results in a potential beneficial CVD preventive effect

    Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice [Mus Musculus]

    No full text
    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on hepatic lipid metabolism and detailed serum lipid profiles, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to measure quantitatively serum lipid profiles and whole genome microarray analysis was used to identify the responsible mechanisms in liver. There were no significant differences found in mean body weight, energy intake and hepatic lipid accumulation between the quercetin and control group. In serum of quercetin-fed mice, TG levels were decreased with 15%, poly unsaturated fatty acids (PUFA) were increased with 14% and saturated fatty acids were decreased. Palmitic acid, oleic acid, and linoleic acid were all decreased in quercetin-fed mice by 9-15%. Both palmitic acid and oleic acid can be oxidized by omega-oxidation. Indeed, gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially omega-oxidation. At the gene level, this was reflected by the up regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, Cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were also up regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid omega-oxidation and lowered corresponding circulating lipid levels, a process that may involve Por and Car, and results in a potential beneficial CVD preventive effect

    Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice [Mus Musculus]

    No full text
    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on hepatic lipid metabolism and detailed serum lipid profiles, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to measure quantitatively serum lipid profiles and whole genome microarray analysis was used to identify the responsible mechanisms in liver. There were no significant differences found in mean body weight, energy intake and hepatic lipid accumulation between the quercetin and control group. In serum of quercetin-fed mice, TG levels were decreased with 15%, poly unsaturated fatty acids (PUFA) were increased with 14% and saturated fatty acids were decreased. Palmitic acid, oleic acid, and linoleic acid were all decreased in quercetin-fed mice by 9-15%. Both palmitic acid and oleic acid can be oxidized by omega-oxidation. Indeed, gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially omega-oxidation. At the gene level, this was reflected by the up regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, Cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor Constitutive androstane receptor (Car; official symbol Nr1i3) were also up regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid omega-oxidation and lowered corresponding circulating lipid levels, a process that may involve Por and Car, and results in a potential beneficial CVD preventive effect

    Chronic quercetin exposure affects fatty acid catabolism in rat lung

    No full text
    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in rat lungs of a chronic (41 weeks) 1% quercetin diet using whole genome microarrays. We show here that fatty acid catabolism pathways, like beta-oxidation and ketogenesis, are up-regulated by the long-term quercetin intervention. Up-regulation of genes (Hmgcs2, Ech1, Acox1, Pcca, Lpl and Acaa2) was verified and confirmed by quantitative real time PCR. In addition, free fatty acid levels were decreased in rats fed the quercetin diet, confirming that quercetin affects fatty acid catabolism. This in vivo study demonstrates for the first time that fatty acid catabolism is a relevant process that is affected in rats by chronic dietary quercetin

    Direct comparison of health effects by dietary polyphenols at equimolar doses in wildtype moderate high-fat fed C57BL/6JOlaHsd mice

    No full text
    Polyphenols generally show beneficial health effects upon supplementation in diet-induced obese rodent models, including reduced body weight gain and reduced levels of markers for cardiovascular diseases (CVD). However, there appear to be large differences between studies, which might be due to differences in models, strains, dietary background, or even concentration of polyphenol that is used. Therefore, we performed a systematic phenotypic evaluation of the effects of selected polyphenols in wildtype C57BL/6JOlaHsd mice. Epigallocatechin-gallate, quercetin, and resveratrol, representing three different phenolic classes, were each added in equimolar amounts (0.50% (w/w), 0.33%, and 0.25%, respectively) to a purified moderate high fat (30energy%) diet for 12 weeks. We studied the polyphenol-induced physiological and molecular effects between them and relative to the nonsupplemented control group during and at the end of the nutritional intervention. Results showed that these polyphenols were present in circulation, but did not induce beneficial health effects as analysed by oral glucose tolerance testing or serum adipokines and CVD-markers such as vascular adhesion molecules. Remarkably, transcriptomics of white adipose tissue showed overlapping sets of significantly differential transcript levels between these polyphenols; AMPK and Notch signalling were affected by these polyphenols. However, mitochondrial processes and mitochondrial density in this tissue did not differ between the polyphenols, which suggested that there was no direct effect on adipose tissue

    Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice

    No full text
    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p <0.01), while the energy intake was not significantly different. Quercetin supplementation lowered hepatic lipid accumulation to 29 % of the amount present in the control mice (p <0.01). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet

    Direct comparison of metabolic health effects of the flavonoids quercetin, hesperetin, epicatechin, apigenin and anthocyanins in high-fat-diet-fed mice

    No full text
    Dietary flavonoid intake is associated with reduced risk of cardiovascular diseases, possibly by affecting metabolic health. The relative potency of different flavonoids in causing beneficial effects on energy and lipid metabolism has not been investigated. Effects of quercetin, hesperetin, epicatechin, apigenin and anthocyanins in mice fed a high-fat diet (HF) for 12 weeks were compared, relative to normal-fat diet. HF-induced body weight gain was significantly lowered by all flavonoids (17–29 %), but most by quercetin. Quercetin significantly lowered HF-induced hepatic lipid accumulation (71 %). Mesenteric adipose tissue weight and serum leptin levels were significantly lowered by quercetin, hesperetin and anthocyanins. Adipocyte cell size and adipose tissue inflammation were not affected. The effect on body weight and composition could not be explained by individual significant effects on energy intake, energy expenditure or activity. Lipid metabolism was not changed as measured by indirect calorimetry or expression of known lipid metabolic genes in liver and white adipose tissue. Hepatic expression of Cyp2b9 was strongly downregulated by all flavonoids. In conclusion, all flavonoids lowered parameters of HF-induced adiposity, with quercetin being most effective

    Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice

    No full text
    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p <0.01), while the energy intake was not significantly different. Quercetin supplementation lowered hepatic lipid accumulation to 29 % of the amount present in the control mice (p <0.01). 1H nuclear magnetic resonance serum lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet

    Phytotherapy in Chronic Prostatitis

    No full text
    Chronic prostatitis/chronic pelvic pain syndrome continues to pose a treatment challenge for urologists. Chronic prostatitis is a very common and poorly understood condition with significant impact on quality of life. In recent literature, studies have been conducted with various treatment modalities that include antibiotics, α-blockers, anti-inflammatory agents, and cognitive behavioral interventions such as biofeedback and psychotherapy. Patients have shown interest in phytotherapy as a treatment option with increasing frequency due to lack of efficacy of conventional therapies. However, very little is known about the efficacy of second- and third-line treatments, such as the use of herbal supplements. We review published literature regarding phytotherapy usage for chronic prostatitis. The treatments include Chinese herbs, green tea extract, zinc, cernitin pollen extract (bee pollen), quercetin, saw palmetto (Serenoa repens), and lycopene. © 2009 Current Medicine Group LLC.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore