5 research outputs found

    Implementation of early next-generation sequencing for inborn errors of immunity: a prospective observational cohort study of diagnostic yield and clinical implications in Dutch genome diagnostic centers

    Get PDF
    Objective Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. Study DesignWe performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. ResultsFor children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. ConclusionIn this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance.Transplantation and immunomodulatio

    Low frequency of MLL-partial tandem duplications in paediatric acute myeloid leukaemia using MLPA as a novel DNA screenings technique.

    No full text
    Item does not contain fulltextMixed-lineage leukaemia (MLL)-partial tandem duplications (PTDs) are found in 3-5% of adult acute myeloid leukaemia (AML), and are associated with poor prognosis. In adult AML, MLL-PTD is only detected in patients with trisomy 11 or internal tandem duplications of FLT3 (FLT3-ITD). To date, studies in paediatric AML are scarce, and reported large differences in the frequency of MLL-PTD, frequently utilising mRNA RT-PCR only to detect MLL-PTDs. We studied the frequency of MLL-PTD in a large cohort of paediatric AML (n=276) and the results from two different methods, i.e. mRNA RT-PCR, and multiplex ligation-dependent probe amplification (MLPA), a method designed to detect copy number differences of specific DNA sequences. In some patients with an MLL-rearrangement, MLL-PTD transcripts were detected, but were not confirmed by DNA-MLPA, indicating that DNA-MLPA can more accurately detect MLL-PTD compared to mRNA RT-PCR. In paediatric AML, MLL-PTD was detected in 7/276 patients (2.5%). One case had a trisomy 11, while the others had normal cytogenetics. Furthermore 4 of the 7 patients revealed a FLT3-ITD, which was significantly higher compared with the other AML cases (p=0.016). In conclusion, using DNA-MLPA as a novel screenings technique in combination with mRNA RT-PCR a low frequency of MLL-PTD in paediatric AML was found. Larger prospective studies are needed to further define the prognostic relevance of MLL-PTD in paediatric AML.1 juli 201

    Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia.

    Get PDF
    Item does not contain fulltextWilms tumor 1 (WT1) mutations have recently been identified in approximately 10% of adult acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) and are associated with poor outcome. Using array-based comparative genome hybridization in pediatric CN-AML samples, we detected a WT1 deletion in one sample. The other WT1 allele was mutated. This prompted us to further investigate the role of WT1 aberrations in childhood AML. Mutations were found in 35 of 298 (12%) diagnostic pediatric AML samples. In 19 of 35 (54%) samples, more than one WT1 aberration was found: 15 samples had 2 different mutations, 2 had a homozygous mutation, and 2 had a mutation plus a WT1 deletion. WT1 mutations clustered significantly in the CN-AML subgroup (22%; P < .001) and were associated with FLT3/ITD (43 vs 17%; P < .001). WT1 mutations conferred an independent poor prognostic significance (WT1 mutated vs wild-type patients: 5-year probability of overall survival [pOS] 35% vs 66%, P = .002; probability of event-free survival 22% vs 46%, P < .001; and cumulative incidence of relapse or regression 70% vs 44%, P < .001). Patients with both a WT1 mutation and a FLT3/ITD had a dismal prognosis (5-year pOS 21%). WT1 mutations occur at a significant rate in childhood AML and are a novel independent poor prognostic marker

    TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands

    No full text
    The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.Research into fetal development and medicin
    corecore