3,457 research outputs found

    Design, processing, and testing of LSI arrays for space station

    Get PDF
    The development of a low power, high performance MOS 256-bit random assess memory with beam leads is discussed. Beam lead process development on silicon-on-sapphire (SOS) is also discussed, and initial electrical results on beam lead SOS TA5388 devices are presented. A comparison of the beam leaded 256-bit RAM (TA6567) layout is made with the non-beam leaded version (TA6473)

    Temporal diversification of Central American cichlids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cichlid fishes are classic examples of adaptive radiation because of their putative tendency to explosively diversify after invading novel environments. To examine whether ecological opportunity increased diversification (speciation minus extinction) early in a species-rich cichlid radiation, we determined if Heroine cichlids experienced a burst of diversification following their invasion of Central America.</p> <p>Results</p> <p>We first reconstructed the Heroine phylogeny and determined the basal node to use as the root of Central American Heroine diversification. We then examined the influence of incomplete taxon sampling on this group's diversification patterns. First, we added missing species randomly to the phylogeny and assessed deviations from a constant rate of lineage accumulation. Using a range of species numbers, we failed to recover significant deviations from a pure-birth process and found little support for an early burst of diversification. Then, we examined patterns of lineage accumulation as nodes were increasingly truncated. We assumed that as we removed more recently diverged lineages that sampling would become more complete thereby increasing the power to detect deviations from a pure-birth model. However, truncation of nodes provided even less support for an early burst of diversification.</p> <p>Conclusions</p> <p>Contrary to expectations, our analyses suggest Heroine cichlids did not undergo a burst of diversification when they invaded from South America. Throughout their history in Central America, Heroine cichlids appear to have diversified at a constant rate.</p

    Rotational Evolution During Type I X-Ray Bursts

    Get PDF
    The rotation rates of six weakly-magnetic neutron stars accreting in low-mass X-ray binaries have most likely been measured by Type I X-ray burst observations with RXTE. The nearly coherent oscillations detected during the few seconds of thermonuclear burning are most simply understood as rotational modulation of brightness asymmetries on the neutron star surface. We show that, as suggested by Strohmayer and colleagues, the frequency changes of 1-2 Hz observed during bursts are consistent with angular momentum conservation as the burning shell hydrostatically expands and contracts. We calculate how vertical heat propagation through the radiative outer layers of the atmosphere and convection affect the coherence of the oscillation. We show that the evolution of the rotational profile depends strongly on whether the burning layers are composed of pure helium or mixed hydrogen/helium. Our results help explain the absence (presence) of oscillations from hydrogen-burning (helium-rich) bursts that was found by Muno and collaborators. We investigate angular momentum transport within the burning layers and the recoupling of the burning layers with the star. We show that the Kelvin-Helmholtz instability is quenched by the strong stratification, and that mixing between the burning fuel and underlying ashes by the baroclinic instability does not occur. However, the baroclinic instability may have time to operate within the differentially rotating burning layer, potentially bringing it into rigid rotation.Comment: To appear in The Astrophysical Journal; minor corrections made to tables and figure

    Explosive diversification following a benthic to pelagic shift in freshwater fishes

    Get PDF
    BACKGROUND: Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America\u27s most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift. RESULTS: Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift. CONCLUSIONS: A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems. doi: 10.1186/1471-2148-13-27

    Biochemical Characterization of a Filtered Synaptoneurosome Preparation from Guinea Pig Cerebral Cortex: Cyclic Adenosine 3’:5’-Monophosphate-generating Systems, Receptors, and Enzymes

    Get PDF
    A particulate preparation was obtained by low speed centrifugation of guinea pig cerebral cortical homogenates prepared with a Krebs-Henseleit buffer. Light microscopic examination, using a reflected light differential interference contrast system, reveals the presence of intact neurons, axonal fragments, glial cells, and erythrocytes along with an abundance of small spherical entities (diameter about 1.1 μm) and snowman-shaped entities (diameter of larger sphere about 1.1 μm, diameter of attached smaller sphere about 0.6 μm). Many unattached smaller spherical entities are also present (diameter about 0.6 μm). Pressure filtration through 5 or l0-μm Millipore filters, followed by low speed centrifugation and resuspension, removes most of the larger entities to afford a suspension composed mainly of the small spherical and snowman-shaped entities. Electron microscopic examination reveals the presence of many synaptosomes with attached resealed postsynaptic entities. It is proposed that these correspond to the snowman-shaped entities to be termed synaptoneurosomes. Accumulations of cyclic AMP elicited by 2-chloroadenosine and histamine, and by combinations of 2-chloroadenosine, histamine, norepinephrine, and forskolin, are lower in filtered than in unfiltered preparations, whereas accumulations elicited by forskolin are unchanged. Levels of adenylate cyclase are reduced by filtration, whereas levels of phosphodiesterase are unchanged. Filtration reduces levels of markers for whole cells and endothelial cells, whereas neuronal markers such as acetylcholinesterase activity and norepinephrine uptake are increased. Levels of S-100 protein, a marker for glial cells, are not significantly decreased. There is no apparent change in the density of many receptors or ion channels. Levels of A1-adenosine and H1-histamine receptors are increased, whereas levels of so-called peripheral benzodiazepine-binding sites are decreased

    Dystrophin glycoprotein complex dysfunction:a regulatory link between muscular dystrophy and cancer cachexia

    Get PDF
    SummaryCachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting

    Combined EXAFS, XRD, DRIFTS, and DFT Study of Nano Copper Based Catalysts for CO2 Hydrogenation

    Get PDF
    Highly monodispersed CuO nanoparticles (NPs) were synthesized via continuous hydrothermal flow synthesis (CHFS) and then tested as catalysts for CO2 hydrogenation. The catalytic behavior of unsupported 11 nm sized nanoparticles from the same batch was characterized by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS), extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and catalytic testing, under CO2/H2 in the temperature range 25–500 °C in consistent experimental conditions. This was done to highlight the relationship among structural evolution, surface products, and reaction yields; the experimental results were compared with modeling predictions based on density functional theory (DFT) simulations of the CuO system. In situ DRIFTS revealed the formation of surface formate species at temperatures as low as 70 °C. DFT calculations of CO2 hydrogenation on the CuO surface suggested that hydrogenation reduced the CuO surface to Cu2O, which facilitated the formation of formate. In situ EXAFS supported a strong correlation between the Cu2O phase fraction and the formate peak intensity, with the maxima corresponding to where Cu2O was the only detectable phase at 170 °C, before the onset of reduction to Cu at 190 °C. The concurrent phase and crystallite size evolution were monitored by in situ XRD, which suggested that the CuO NPs were stable in size before the onset of reduction, with smaller Cu2O crystallites being observed from 130 °C. Further reduction to Cu from 190 °C was followed by a rapid decrease of surface formate and the detection of adsorbed CO from 250 °C; these results are in agreement with heterogeneous catalytic tests where surface CO was observed over the same temperature range. Furthermore, CH4 was detected in correspondence with the decomposition of formate and formation of the Cu phase, with a maximum conversion rate of 2.8% measured at 470 °C (on completely reduced copper), supporting the indication of independent reaction pathways for the conversion of CO2 to CH4 and CO that was suggested by catalytic tests. The resulting Cu NPs had a final crystallite size of ca. 44 nm at 500 °C and retained a significantly active surface

    The 72-Hour WEBT Microvariability Observation of Blazar S5 0716+714 in 2009

    Full text link
    Context. The international whole earth blazar telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 magnitude range. The resulting light curve is presented here for the first time. Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model

    Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator

    Get PDF
    Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure
    corecore