210 research outputs found

    Active perception for plume source localisation with underwater gliders

    Full text link
    © 2018 Australasian Robotics and Automation Association. All rights reserved. We consider the problem of localising an unknown underwater plume source in an energy-optimal manner. We first develop a specialised Gaussian process (GP) regression technique for estimating the source location given concentration measurements and an ambient flow field. Then, we use the GP upper confidence bound (GP-UCB) for active perception to choose sampling locations that both improve the estimate of the source and lead the glider to the correct source location. A trim-based FMT∗planner is then used to find the sequence of controls that minimise the energy consumption. We provide a theoretical guarantee on the performance of the algorithm, and demonstrate the algorithm using both artificial and experimental datasets

    Online estimation of ocean current from sparse GPS data for underwater vehicles

    Full text link
    © 2019 IEEE. Underwater robots are subject to position drift due to the effect of ocean currents and the lack of accurate localisation while submerged. We are interested in exploiting such position drift to estimate the ocean current in the surrounding area, thereby assisting navigation and planning. We present a Gaussian process (GP)-based expectation-maximisation (EM) algorithm that estimates the underlying ocean current using sparse GPS data obtained on the surface and dead-reckoned position estimates. We first develop a specialised GP regression scheme that exploits the incompressibility of ocean currents to counteract the underdetermined nature of the problem. We then use the proposed regression scheme in an EM algorithm that estimates the best-fitting ocean current in between each GPS fix. The proposed algorithm is validated in simulation and on a real dataset, and is shown to be capable of reconstructing the underlying ocean current field. We expect to use this algorithm to close the loop between planning and estimation for underwater navigation in unknown ocean currents

    The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia

    Full text link
    Warm-core eddies (WCEs) formed from the East Australian Current (EAC) play an important role in the heat, mass and biogeochemical budgets of the western Tasman Sea. The development and separation of an EAC WCE during July-December 2008 was observed using remotely sensed temperature, ocean colour and sea-level elevation, three Argo floats, a shipboard CTD, a shelf mooring array and a 15-day deployment of a Slocum glider. The eddy formed from an EAC meander during the first half of 2008 and in late August had a ~275m deep surface mixed layer. In the two months before separation in early December, fresher and warmer EAC water flooded the top of the eddy, submerging the winter mixed layer. The rate of vertical transport due to submergence was estimated to be between 1 and 6Sv, at the time accounting for a significant fraction of the mean southward flow of the EAC. The core of the eddy had a surface chlorophyll a concentration of <0.4mgm-3 throughout the observations. A 20-40m thick pycnocline formed at the interface of the flooding surface waters and the submerged layer. Chlorophyll a concentration in the pycnocline ranged from 0.5 to 2mgm-3, with depth-integrated concentration ranging between 25 and 75mgm-2. The development of a sub-surface maximum suggests that flooding increased light levels in the pycnocline. Elevated levels of coloured dissolved organic matter in the submerged layer correspond to oxygen depletion, suggesting respiration of organic matter. A comparison is made with observations from WCEs in 1978 and 1997 in which, unusually, surface flooding did not occur, but solar heating stratified the top 50m. In the two eddies with surface capping, surface chlorophyll a concentrations were an order of magnitude higher than the 2008 flooded eddy, but depth-integrated chlorophyll a was similar. These findings suggest that EAC WCEs with relatively shallow surface flooding contain more phytoplankton biomass than surface images would suggest, with the vertical position of the chlorophyll a maximum depending on whether, and to what depth, the winter surface mixed layer is submerged. © 2010 Elsevier Ltd

    Impact of the COVID-19 pandemic on admission rates for, and management of, acute coronary syndromes in England

    Get PDF
    Background Several countries affected by the COVID-19 pandemic have reported a substantial drop in the number of patients attending the emergency department with acute coronary syndromes and a reduced number of cardiac procedures. We aimed to understand the scale, nature, and duration of changes to admissions for different types of acute coronary syndrome in England and to evaluate whether in-hospital management of patients has been affected as a result of the COVID-19 pandemic. Methods We analysed data on hospital admissions in England for types of acute coronary syndrome from Jan 1, 2019, to May 24, 2020, that were recorded in the Secondary Uses Service Admitted Patient Care database. Admissions were classified as ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), myocardial infarction of unknown type, or other acute coronary syndromes (including unstable angina). We identified revascularisation procedures undertaken during these admissions (ie, coronary angiography without percutaneous coronary intervention [PCI], PCI, and coronary artery bypass graft surgery). We calculated the numbers of weekly admissions and procedures undertaken; percentage reductions in weekly admissions and across subgroups were also calculated, with 95% CIs. Findings Hospital admissions for acute coronary syndrome declined from mid-February, 2020, falling from a 2019 baseline rate of 3017 admissions per week to 1813 per week by the end of March, 2020, a reduction of 40% (95% CI 37–43). This decline was partly reversed during April and May, 2020, such that by the last week of May, 2020, there were 2522 admissions, representing a 16% (95% CI 13–20) reduction from baseline. During the period of declining admissions, there were reductions in the numbers of admissions for all types of acute coronary syndrome, including both STEMI and NSTEMI, but relative and absolute reductions were larger for NSTEMI, with 1267 admissions per week in 2019 and 733 per week by the end of March, 2020, a percent reduction of 42% (95% CI 38–46). In parallel, reductions were recorded in the number of PCI procedures for patients with both STEMI (438 PCI procedures per week in 2019 vs 346 by the end of March, 2020; percent reduction 21%, 95% CI 12–29) and NSTEMI (383 PCI procedures per week in 2019 vs 240 by the end of March, 2020; percent reduction 37%, 29–45). The median length of stay among patients with acute coronary syndrome fell from 4 days (IQR 2–9) in 2019 to 3 days (1–5) by the end of March, 2020. Interpretation Compared with the weekly average in 2019, there was a substantial reduction in the weekly numbers of patients with acute coronary syndrome who were admitted to hospital in England by the end of March, 2020, which had been partly reversed by the end of May, 2020. The reduced number of admissions during this period is likely to have resulted in increases in out-of-hospital deaths and long-term complications of myocardial infarction and missed opportunities to offer secondary prevention treatment for patients with coronary heart disease. The full extent of the effect of COVID-19 on the management of patients with acute coronary syndrome will continue to be assessed by updating these analyses

    The early mathematical education of Ada Lovelace

    Get PDF
    Ada, Countess of Lovelace, is remembered for a paper published in 1843, which translated and considerably extended an article about the unbuilt Analytical Engine, a general-purpose computer designed by the mathematician and inventor Charles Babbage. Her substantial appendices, nearly twice the length of the original work, contain an account of the principles of the machine, along with a table often described as ‘the first computer program’. In this paper we look at Lovelace's education before 1840, which encompassed older traditions of practical geometry; newer textbooks influenced by continental approaches; wide reading; and a fascination with machinery. We also challenge judgements by Dorothy Stein and by Doron Swade of Lovelace's mathematical knowledge and skills before 1840, which have impacted later scholarly and popular discourse
    • 

    corecore