66 research outputs found

    Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells

    Get PDF
    We provide evidence from a newly established, conditionally immortal cell line (UB/UE-1) that vestibular supporting cells from the mammalian inner ear can differentiate postnatally into more than one variant of hair cell. A clonal supporting cell line was established from pure utricular sensory epithelia of H2kbtsA58 transgenic mice 2 d after birth. Cell proliferation was dependent on conditional expression of the immortalizing gene, the ā€œTā€ antigen from the SV40 virus. Proliferating cells expressed cytokeratins, and patch-clamp recordings revealed that they all expressed small membrane currents with little time-dependence. They stopped dividing within 2 d of being transferred to differentiating conditions, and within a week they formed three defined populations expressing membrane currents characteristic of supporting cells and two kinds of neonatal hair cell. The cells expressed several characteristic features of normal hair cells, including the transcription factor Brn3.1, a functional acetylcholine receptor composed of a9 subunits, and the cytoskeletal proteins myosin VI, myosin VIIa, and fimbrin. Immunofluorescence labeling and electron microscopy showed that the cells formed complex cytoskeletal arrays on their upper surfaces with structural features resembling those at the apices of normal hair cells. The cell line UB/UE-1 provides a valuable in vitro preparation in which the expression of numerous structural and physiological components can be initiated or upregulated during early stages of mammalian hair cell commitment and differentiation

    Cell transplantation to restore lost auditory nerve function is a realistic clinical opportunity

    Get PDF
    Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss

    Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses.

    Get PDF
    Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a 'critical period' of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the Ī±9-nicotinic acetylcholine receptor subunit (Ī±9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca(2+)-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems

    5 years of plankton monitoring in Southampton Water and the Solent including FerryBox, Dock Monitor and discrete sample data

    Get PDF
    The Environment Agency (EA) has to make a eutrophication status assessment of the Solent and its harbours every four years. This requires a review of the frequency and magnitude of phytoplankton blooms. To assist with this process SOC has prepared this report to provide a "meta-data base" describing the relevant data sets collected by SOC between 1999 and 2003. It provides details of :- (1) methods used to collect the data (2) errors associated with the methods (3) calibration and quality control procedures used (4) changes in procedures (5) references to technical reports and theses containing detailed descriptions of the methods used. Changes in concentrations of chlorophyll in relation to concentrations of nutrients at SOC study sites in Southampton Water are plotted in graphs. The occurrence of bloom events and processes of bloom limitation are described. In particular observations of the variation of chlorophyll concentrations made using the FerryBox route between Town Quay Southampton and Cowes Isle of Wight are described and the development of the systems and associated problems are detailed. The information is presented as (i) graphs of the whole data set at all locations against time for each year (ii) 3D maps of the variation in concentrations with location and time (iii) time series for single locations along the FerryBox track

    Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea

    Get PDF
    Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9ā€“12 kHz region) of four mouse strains commonly used in hearing research: earlyā€onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and ā€˜good hearingā€™ strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the ageā€related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ā€dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the postā€synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea

    Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea

    Get PDF
    Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of ageā€related hearing loss. Here, we have investigated the functional characteristics of IHCs from earlyā€onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from lateā€onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9ā€“12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30ā€“40% starting from āˆ¼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres reā€form functional axonā€somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent postā€synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in reā€establishing the LOCā€IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+mice, indicating that the MET apparatus directly contributes to the progression of ageā€related hearing loss

    Ageā€related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells

    Get PDF
    Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9ā€“12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and nonā€linear capacitance, a readout of prestinā€dependent electromotility. Despite these changes, OHCs have a normal V m and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, goodā€hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of ageā€related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing

    Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea.

    Get PDF
    Key Points: The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells. In contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human Hypothyroidism, Deafness and Real anomaly (HDR) Syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. Abstract: The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human Hypoparathyroidism, Deafness and Renal Anomaly syndrome arises from functional deficits in IHCs as well as to loss of function from OHCs and both afferent and efferent neurons

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy

    Get PDF
    In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease
    • ā€¦
    corecore