39 research outputs found

    News vs Information

    Full text link
    We consider the relative entropy between the vacuum state and a coherent state in linearized quantum gravity around a stationary black hole spacetime. Combining recent results by Casini et al. and Longo with the Raychaudhuri equation, the following result is obtained: Let A\frak A be the algebra of observables assoiciated with a region that is the causal future of some compact set in the interior of the spacetime. Let SS be the relative entropy with respect to this algebra, AA the area of the horizon cross section defined by the region, computed to second order in the gravitational perturbation. If the region is time-translated by the Killing parameter tt, then ddt(S+A/4)=2πF\frac{d}{d t}(S+A/4)= 2\pi F, with FF the flux of the gravitational/matter radiation (integrated squared news tensor) emitted towards the future of the region.Comment: 11 pages, 1 figure. arXiv admin note: text overlap with arXiv:1903.07508, v2: some details added on function spaces and decay of solutions, refs. adde

    Comparison between various notions of conserved charges in asymptotically AdS-spacetimes

    Full text link
    We derive hamiltionian generators of asymptotic symmetries for general relativity with asymptotic AdS boundary conditions using the ``covariant phase space'' method of Wald et al. We then compare our results with other definitions that have been proposed in the literature. We find that our definition agrees with that proposed by Ashtekar et al, with the spinor definition, and with the background dependent definition of Henneaux and Teitelboim. Our definition disagrees with the one obtained from the ``counterterm subtraction method,'' but the difference is found to consist only of a ``constant offset'' that is determined entirely in terms of the boundary metric. We finally discuss and justify our boundary conditions by a linear perturbation analysis, and we comment on generalizations of our boundary conditions, as well as inclusion of matter fields.Comment: 64p, Latex, no figures, v2: references added, typos corrected, v3: some equations correcte

    Stability in Designer Gravity

    Full text link
    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al.and find they differ from the spinor charges except when W=0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which WW has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this, by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed.Comment: 29 page

    All Vacuum Near-Horizon Geometries in DD-dimensions with (D3)(D-3) Commuting Rotational Symmetries

    Full text link
    We explicitly construct all stationary, non-static, extremal near horizon geometries in DD dimensions that satisfy the vacuum Einstein equations, and that have D3D-3 commuting rotational symmetries. Our work generalizes [arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been given in D=4,5D=4,5. But our method is different from theirs and relies on a matrix formulation of the Einstein equations. Unlike their method, this matrix formulation works for any dimension. The metrics that we find come in three families, with horizon topology S2×TD4S^2 \times T^{D-4}, or S3×TD5S^3 \times T^{D-5}, or quotients thereof. Our metrics depend on two discrete parameters specifying the topology type, as well as (D2)(D3)/2(D-2)(D-3)/2 continuous parameters. Not all of our metrics in D6D \ge 6 seem to arise as the near horizon limits of known black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added, discussion of the parameters specifying solutions corrected, amended to match published versio

    Asymptotic generators of fermionic charges and boundary conditions preserving supersymmetry

    Get PDF
    We use a covariant phase space formalism to give a general prescription for defining Hamiltonian generators of bosonic and fermionic symmetries in diffeomorphism invariant theories, such as supergravities. A simple and general criterion is derived for a choice of boundary condition to lead to conserved generators of the symmetries on the phase space. In particular, this provides a criterion for the preservation of supersymmetries. For bosonic symmetries corresponding to diffeomorphisms, our prescription coincides with the method of Wald et al. We then illustrate these methods in the case of certain supergravity theories in d=4d=4. In minimal AdS supergravity, the boundary conditions such that the supercharges exist as Hamiltonian generators of supersymmetry transformations are unique within the usual framework in which the boundary metric is fixed. In extended N=4{\mathcal N}=4 AdS supergravity, or more generally in the presence of chiral matter superfields, we find that there exist many boundary conditions preserving N=1{\mathcal N}=1 supersymmetry for which corresponding generators exist. These choices are shown to correspond to a choice of certain arbitrary boundary ``superpotentials,'' for suitably defined ``boundary superfields.'' We also derive corresponding formulae for the conserved bosonic charges, such as energy, in those theories, and we argue that energy is always positive, for any supersymmetry-preserving boundary conditions. We finally comment on the relevance and interpretation of our results within the AdS-CFT correspondence.Comment: 45 pages, Latex, no figures, v2: extended discussion of positive energy theorem and explicit form of fermionic generators, references adde

    On the `Stationary Implies Axisymmetric' Theorem for Extremal Black Holes in Higher Dimensions

    Full text link
    All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [gr-qc/0605106] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein's equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain "diophantine condition," which holds except for a set of measure zero.Comment: 30pp, Latex, no figure

    Conformal weights in the Kerr/CFT correspondence

    Full text link
    It has been conjectured that a near-extreme Kerr black hole is described by a 2d CFT. Previous work has shown that CFT operators dual to axisymmetric gravitational perturbations have integer conformal weights. In this paper, we study the analogous problem in 5d. We consider the most general near-extreme vacuum black hole with two rotational symmetries. This includes Myers-Perry black holes, black rings and Kaluza-Klein black holes. We find that operators dual to gravitational (or electromagnetic or massless scalar field) perturbations preserving both rotational symmetries have integer conformal weights, the same for all black holes considered.Comment: 19 page

    Electrovacuum Near-horizon Geometries in Four and Five Dimensions

    Full text link
    Associated to every stationary extremal black hole is a unique near-horizon geometry, itself a solution of the field equations. These latter spacetimes are more tractable to analyze and most importantly, retain properties of the original black hole which are intrinsic to the event horizon. After reviewing general features of near-horizon geometries, such as SO(2,1) symmetry enhancement, I report on recent work on stationary, charged extremal black hole solutions of the Einstein-Maxwell equations with a negative cosmological constant in four dimensions and present a classification of near-horizon geometries of black holes on this kind. In five dimensions, charged extremal black hole solutions to minimal (gauged) supergravity, which arises naturally in string theory and the gauge theory/gravity correspondence, are considered. I consider the classification of near-horizon geometries for the subset of such black holes which are supersymmetric. Recent progress on the classification problem in the general extremal, non-supersymmetric case is also discussed.Comment: Invited contribution to a special issue of Classical and Quantum Gravity on the 19th International Conference on General Relativity and Gravitation, Mexico City, July 5-9, 201

    On the uniqueness and global dynamics of AdS spacetimes

    Get PDF
    We study global aspects of complete, non-singular asymptotically locally AdS spacetimes solving the vacuum Einstein equations whose conformal infinity is an arbitrary globally stationary spacetime. It is proved that any such solution which is asymptotically stationary to the past and future is itself globally stationary. This gives certain rigidity or uniqueness results for exact AdS and related spacetimes.Comment: 18pp, significant revision of v

    No Dynamics in the Extremal Kerr Throat

    Full text link
    Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum general relativity whose asymptotic behavior agrees with that of the extremal Kerr throat, sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We argue that all such solutions are diffeomorphic to the NHEK geometry itself. The logic proceeds in two steps. We first argue that certain charges must vanish at all times for any solution with NHEK asymptotics. We then analyze these charges in detail for linearized solutions. Though one can choose the relevant charges to vanish at any initial time, these charges are not conserved. As a result, requiring the charges to vanish at all times is a much stronger condition. We argue that all solutions satisfying this condition are diffeomorphic to the NHEK metric.Comment: 42 pages, 3 figures. v3: minor clarifications and correction
    corecore