4,614 research outputs found
Trapping in complex networks
We investigate the trapping problem in Erdos-Renyi (ER) and Scale-Free (SF)
networks. We calculate the evolution of the particle density of
random walkers in the presence of one or multiple traps with concentration .
We show using theory and simulations that in ER networks, while for short times
, for longer times exhibits a more
complex behavior, with explicit dependence on both the number of traps and the
size of the network. In SF networks we reveal the significant impact of the
trap's location: is drastically different when a trap is placed on a
random node compared to the case of the trap being on the node with the maximum
connectivity. For the latter case we find
\rho(t)\propto\exp\left[-At/N^\frac{\gamma-2}{\gamma-1}\av{k}\right] for all
, where is the exponent of the degree distribution
.Comment: Appendix adde
Transition time asymptotics of queue-based activation protocols in random-access networks
We consider networks where each node represents a server with a queue. An active node deactivates at unit rate. An inactive node activates at a rate that depends on its queue length, provided none of its neighbors is active. For complete bipartite networks, in the limit as the queues become large, we compute the average transition time between the two states where one half of the network is active and the other half is inactive. We show that the law of the transition time divided by its mean exhibits a trichotomy, depending on the activation rate functions
Kinetics of diffusion-limited catalytically-activated reactions: An extension of the Wilemski-Fixman approach
We study kinetics of diffusion-limited catalytically-activated
reactions taking place in three dimensional systems, in which an annihilation
of diffusive particles by diffusive traps may happen only if the
encounter of an with any of the s happens within a special catalytic
subvolumen, these subvolumens being immobile and uniformly distributed within
the reaction bath. Suitably extending the classical approach of Wilemski and
Fixman (G. Wilemski and M. Fixman, J. Chem. Phys. \textbf{58}:4009, 1973) to
such three-molecular diffusion-limited reactions, we calculate analytically an
effective reaction constant and show that it comprises several terms associated
with the residence and joint residence times of Brownian paths in finite
domains. The effective reaction constant exhibits a non-trivial dependence on
the reaction radii, the mean density of catalytic subvolumens and particles'
diffusion coefficients. Finally, we discuss the fluctuation-induced kinetic
behavior in such systems.Comment: To appear in J. Chem. Phy
Heat flow in chains driven by thermal noise
We consider the large deviation function for a classical harmonic chain
composed of N particles driven at the end points by heat reservoirs, first
derived in the quantum regime by Saito and Dhar and in the classical regime by
Saito and Dhar and Kundu et al. Within a Langevin description we perform this
calculation on the basis of a standard path integral calculation in Fourier
space. The cumulant generating function yielding the large deviation function
is given in terms of a transmission Green's function and is consistent with the
fluctuation theorem. We find a simple expression for the tails of the heat
distribution which turn out to decay exponentially. We, moreover, consider an
extension of a single particle model suggested by Derrida and Brunet and
discuss the two-particle case. We also discuss the limit for large N and
present a closed expression for the cumulant generating function. Finally, we
present a derivation of the fluctuation theorem on the basis of a Fokker-Planck
description. This result is not restricted to the harmonic case but is valid
for a general interaction potential between the particles.Comment: Latex: 26 pages and 9 figures, appeared in J. Stat. Mech. P04005
(2012
Quantum state estimation and large deviations
In this paper we propose a method to estimate the density matrix \rho of a
d-level quantum system by measurements on the N-fold system. The scheme is
based on covariant observables and representation theory of unitary groups and
it extends previous results concerning the estimation of the spectrum of \rho.
We show that it is consistent (i.e. the original input state \rho is recovered
with certainty if N \to \infty), analyze its large deviation behavior, and
calculate explicitly the corresponding rate function which describes the
exponential decrease of error probabilities in the limit N \to \infty. Finally
we discuss the question whether the proposed scheme provides the fastest
possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one
new subsection (4.1) and another (4.2 was 4.1 in the previous version)
completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected.
References added. Accepted for publication in Rev. Math. Phy
Tunneling and Metastability of continuous time Markov chains
We propose a new definition of metastability of Markov processes on countable
state spaces. We obtain sufficient conditions for a sequence of processes to be
metastable. In the reversible case these conditions are expressed in terms of
the capacity and of the stationary measure of the metastable states
Discrete Particle Swarm Optimization for the minimum labelling Steiner tree problem
Particle Swarm Optimization is an evolutionary method inspired by the
social behaviour of individuals inside swarms in nature. Solutions of the problem are
modelled as members of the swarm which fly in the solution space. The evolution is
obtained from the continuous movement of the particles that constitute the swarm
submitted to the effect of the inertia and the attraction of the members who lead the
swarm. This work focuses on a recent Discrete Particle Swarm Optimization for combinatorial optimization, called Jumping Particle Swarm Optimization. Its effectiveness is
illustrated on the minimum labelling Steiner tree problem: given an undirected labelled
connected graph, the aim is to find a spanning tree covering a given subset of nodes,
whose edges have the smallest number of distinct labels
Entropy production and fluctuation relations for a KPZ interface
We study entropy production and fluctuation relations in the restricted
solid-on-solid growth model, which is a microscopic realization of the KPZ
equation. Solving the one dimensional model exactly on a particular line of the
phase diagram we demonstrate that entropy production quantifies the distance
from equilibrium. Moreover, as an example of a physically relevant current
different from the entropy, we study the symmetry of the large deviation
function associated with the interface height. In a special case of a system of
length L=4 we find that the probability distribution of the variation of height
has a symmetric large deviation function, displaying a symmetry different from
the Gallavotti-Cohen symmetry.Comment: 21 pages, 5 figure
- …