337 research outputs found

    Role of Lysyl oxidase-like 1 gene polymorphisms in Pakistani patients with pseudoexfoliative glaucoma

    Get PDF
    Contains fulltext : 109429.pdf (publisher's version ) (Open Access)PURPOSE: Single nucleotide polymorphisms (SNPs) rs1048661 (p.R141L) and rs3825942 (p.G153D) in the lysyl oxidase-like 1 (LOXL1) gene have been previously reported to be associated with pseudoexfoliation glaucoma (PEXG) in various Asian and European populations, but these SNPs have not yet been studied in the Pakistani population. Therefore the aim of the present study was to investigate the association of these two coding LOXL1 SNPs in Pakistani PEXG patients. METHODS: One hundred twenty-eight Pakistani patients diagnosed with PEXG and 180 healthy controls were recruited for the study. Genomic DNA was extracted and both SNPs were genotyped by direct sequencing. Association of genotype and allele frequencies with PEXG were analyzed using the Chi-square (chi(2)) test. RESULTS: Genotype and allele frequencies of both rs1048661 and rs3825942 were found to be significantly associated with PEXG. The GG genotypes of both LOXL1 SNPs were associated with an increased risk of developing PEXG. In addition the G alleles of rs1048661 and rs3825942 confer an increased risk for PEXG with an odds ratio (OR) of 2.98 (95% CI 1.94-4.57) and OR 6.83 (95% CI 2.94-16.67), respectively. CONCLUSIONS: A significant association was found for the G allele of rs1048661 and rs3825942 in PEXG patients of Pakistani origin

    Association of tumor necrosis factor alpha gene polymorphism G-308A with pseudoexfoliative glaucoma in the Pakistani population

    Get PDF
    Contains fulltext : 80274.pdf (publisher's version ) (Open Access)PURPOSE: The purpose of the present study was to determine the role of the tumor necrosis factor alpha (TNF-alpha) gene polymorphism G-308A and total serum immunoglobulin E (TsIgE) levels in the onset of pseudoexfoliation glaucoma (PEXG) in Pakistani patients. METHODS: The TNF-alpha polymorphism G-308A was analyzed in 122 patients with PEXG and 126 healthy unrelated controls by using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). TsIgE levels were determined by solid-phase enzyme-linked immunosorbent assay (ELISA). RESULTS: The AA and GA genotypes were strongly associated with PEXG (p<0.001), with an odds ratio (OR) of 0.07 (95% confidence interval [CI]=0.02-0.27) and 0.24 (95% CI=0.12-0.51), respectively, while the GG genotype was found at a higher frequency in controls as compared to patients (p<0.001) OR=8.95 (95% CI=4.55-17.81). No significant difference was found in TsIgE levels of both patients and controls (p=0.86). CONCLUSION: The present study concludes that the TNF-alpha polymorphism G-308A is strongly associated with PEXG. To our knowledge this is the first study in southeast Asia which demonstrates a strong association of a TNF-alpha polymorphism with PEXG

    Regulation of ABCA1 by AMD-Associated Genetic Variants and Hypoxia in iPSC-RPE

    Full text link
    Age-related macular degeneration (AMD) is a progressive disease of the macula characterized by atrophy of the retinal pigment epithelium (RPE) and photoreceptor degeneration, leading to severe vision loss at advanced stages in the elderly population. Impaired reverse cholesterol transport (RCT) as well as intracellular lipid accumulation in the RPE are implicated in AMD pathogenesis. Here, we focus on ATP-binding cassette transporter A1 (ABCA1), a major cholesterol transport protein in the RPE, and analyze conditions that lead to ABCA1 dysregulation in induced pluripotent stem cell (iPSC)-derived RPE cells (iRPEs). Our results indicate that the risk-conferring alleles rs1883025 (C) and rs2740488 (A) in ABCA1 are associated with increased ABCA1 mRNA and protein levels and reduced efficiency of cholesterol efflux from the RPE. Hypoxia, an environmental risk factor for AMD, reduced expression of ABCA1 and increased intracellular lipid accumulation. Treatment with a liver X receptor (LXR) agonist led to an increase in ABCA1 expression and reduced lipid accumulation. Our data strengthen the homeostatic role of cholesterol efflux in the RPE and suggest that increasing cellular cholesterol export by stimulating ABCA1 expression might lessen lipid load, improving RPE survival and reducing the risk of developing AMD

    Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies

    Get PDF
    Contains fulltext : 88522.pdf (publisher's version ) (Open Access)BACKGROUND: The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans. RESULTS: In this study, we show that the severe reduction of eye size in the outm233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed. CONCLUSIONS: This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype

    Arousal, Sleep and Cardiovascular Responses to Intermittent Hypercapnic Hypoxia in Piglets

    Get PDF
    Clinical studies have demonstrated an arousal deficit in infants suffering Obstructive Sleep Apnoea (OSA), and that treatment to alleviate the symptoms of OSA appears to reverse the deficit in arousability. Some sudden infant deaths are thought to be contingent upon such an arousal deficit. This research utilised young piglets during early postnatal development, and exposed them to intermittent hypercapnic hypoxia (IHH) as a model of clinical respiratory diseases. Arousal responses of control animals were compared to the animals exposed to IHH. Comparisons were also made between successive exposures on the first and the fourth consecutive days of IHH. Time to arouse after the onset of the respiratory stimulus, and frequency of arousals during recovery, demonstrated that arousal deficits arose after successive exposures and that these were further exacerbated on the fourth study day. After an overnight recovery period, the arousal deficit was apparently dormant, and only triggered by HH exposure. These studies confirm that both acute and chronic deficits can be induced on a background of otherwise normal postnatal development, suggesting that deficits observed in the clinical setting may be a secondary phenomenon

    Genetic Risk in Families with Age-Related Macular Degeneration

    Get PDF
    PURPOSE: To determine the contribution of common and rare genetic risk variants in families with age-related macular degeneration (AMD). DESIGN: Case-control study. PARTICIPANTS: A family cohort (355 affected and 342 unaffected family members from 144 families with AMD) and an unrelated case-control cohort (1078 patients, 952 controls), recruited from the European Genetic Database. METHODS: Genetic data of both cohorts were filtered for carriership of rare genetic variants in the coding and splice-site regions of the complement factor H (CFH) and complement factor I (CFI) genes, and 52 AMD-associated variants were extracted for calculation of genetic risk scores (GRS). To compare GRSs between familial and nonfamilial rare CFH and CFI variant carriers and noncarriers and between AMD disease stages, we performed a 2-way analysis of variance, with Bonferroni correction for multiple testing. Within families with AMD carrying rare CFH and CFI variants, we analyzed segregation patterns by calculating the proportion of affected among carriers. MAIN OUTCOME MEASURES: GRSs and segregation of rare CFH and CFI variants. RESULTS: We observed higher GRSs in familial versus nonfamilial individuals without rare CFH and CFI variants: mean GRS, 1.76 (standard error [SE], 0.08) versus 0.83 (SE, 0.03; P < 0.001). In 51 of 144 families (35.4%), rare CFH and CFI variants were identified. Within the AMD family cohort, carriers of rare CFH and CFI variants showed lower GRSs compared with noncarriers (mean GRS, 1.05 [SE, 0.23] vs. 1.76 [SE, 0.08]; P = 0.02). The proportion of affected family members with a high GRS was 57.3% (176/307). Of the affected family members with a low or intermediate GRS, 40.0% carried rare CFH or CFI variants. Among carriers of 11 rare CFH or CFI variants, the proportion affected by AMD was more than 75%. CONCLUSIONS: Genetic risk in families with AMD often is attributed to high GRSs based on common variants. However, in part of the families with a low or intermediate GRS, rare CFH and CFI variants contributed to disease development. We recommend computing GRSs and sequencing the CFH and CFI genes in families with AMD, in particular in the light of ongoing gene-specific clinical trials

    The genetics and disease mechanisms of rhegmatogenous retinal detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.</p

    The genetics and disease mechanisms of rhegmatogenous retinal detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.</p

    The genetics and disease mechanisms of rhegmatogenous retinal detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.</p

    The genetics and disease mechanisms of rhegmatogenous retinal detachment

    Get PDF
    Rhegmatogenous retinal detachment (RRD) is a sight threatening condition that warrants immediate surgical intervention. To date, 29 genes have been associated with monogenic disorders involving RRD. In addition, RRD can occur as a multifactorial disease through a combined effect of multiple genetic variants and non-genetic risk factors. In this review, we provide a comprehensive overview of the spectrum of hereditary disorders involving RRD. We discuss genotype-phenotype correlations of these monogenic disorders, and describe genetic variants associated with RRD through multifactorial inheritance. Furthermore, we evaluate our current understanding of the molecular disease mechanisms of RRD-associated genetic variants on collagen proteins, proteoglycan versican, and the TGF-β pathway. Finally, we review the role of genetics in patient management and prevention of RRD. We provide recommendations for genetic testing and prophylaxis of at-risk patients, and hypothesize on novel therapeutic approaches beyond surgical intervention.</p
    corecore