3,813 research outputs found

    Computational parametric study of sidewall-compression scramjet inlet performance at Mach 10

    Get PDF
    A computational parametric study of three-dimensional, sidewall-compression scramjet inlets was performed to identify the effects of geometric parameters on inlet performance. The parameters were the leading-edge sweep angle, varied between 30 and 60 deg, and the leading-edge position of the cowl, located at the throat and at two forward positions. A laminar boundary layer with cold-wall (T(sub wall) = 300 K (540 R)) boundary conditions was imposed. The parametric study was performed for a Mach number of 10 and a unit free-stream Reynolds number of 7.06 x 10(exp 6) per meter (2.15 x 10(exp 6) per foot) at a geometric contraction ratio of 5. The performance of each configuration was evaluated in terms of the mass capture, throat Mach number, total pressure recovery, kinetic energy efficiency, and internal compression. One computation of an unswept configuration was included as a baseline to determine the effects of introducing leading-edge sweep on the flow-field parameters. The purpose of the computational parametric study was to perform a trade-off of the effects of various parameters on the global performance of the inlet. Although no single optimal configuration emerged, trade-offs among the stated performance parameters identified a leading-edge sweep angle of 45 deg as possessing the most attractive performance characteristics

    Principled Humanitarian Organizations and the Use of Force: Is There Space to Speak Out?

    Get PDF
    Humanitarian organizations are fundamentally concerned with addressing the suffering of civilians. The decision by an armed actor to resort to force can result in greater protection or greater harm, and has at least as significant an impact on civilian lives as any decision made during the conduct of hostilities. Yet, humanitarian organizations rarely publicly advocate for or against the use of force. This article explores the perceived and actual limitations that humanitarian principles place on the public advocacy of humanitarian organizations regarding the recourse to force. It begins with a discussion of the relevant legal framework and explication of the fundamental humanitarian principles. It then goes on to discuss the political and operational implications for humanitarian organizations that choose to speak out, and outlines the issues that these organizations may consider when choosing to adopt a public position on the use of force

    Experimental investigation of generic three-dimensional sidewall-compression scramjet inlets at Mach 6 in tetrafluoromethane

    Get PDF
    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number

    Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    Get PDF
    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number

    Mach 10 computational study of a three-dimensional scramjet inlet flow field

    Get PDF
    The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10 (exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes

    Schlieren photographs and internal pressure distributions for three-dimensional sidewall-compression scramjet inlets at a Mach number of 6 in CF4

    Get PDF
    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at a Mach number of 6 and a free-stream ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with static pressure orifices distributed on the sidewalls, baseplate, and cowl. Schlieren movies were made of selected tunnel runs for flow visualization of the entrance plane and cowl region. Although these movies could not show the internal flow, the effect of the internal flow on the external flow was evident by way of spillage. The purpose is to provide a preliminary data release for the investigation. The models, facility, and testing methods are described, and the test matrix and a tabulation of tunnel runs are provided. Line plots highlighting the stated parametric effects and a representative set of schlieren photographs are presented without analysis

    A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field

    Get PDF
    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration

    Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6

    Get PDF
    The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart

    Mach 10 computational study of a three-dimensional scramjet inlet flow field

    Get PDF
    The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at Mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10(exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes
    corecore