2,385 research outputs found

    Loading a continuous-wave atom laser by optical pumping techniques

    Get PDF
    Demonstrating that despite loss processes, Bose-Einstein condensates can be formed in steady state is a prerequisite for obtaining a coherent beam of atoms in a continuous-wave atom laser. In this paper we propose a method for loading atoms into the thermal component of a Bose condensed cloud confined in a magnetic trap. This method is aimed at allowing steady state dynamics to be achieved. The proposed scheme involves loading atoms into the conservative magnetic potential using the spontaneous emission of photons. We show that the probability for the reabsorption of these photons may be small .Comment: 6 pages, 7 figure

    Proton damage comparison of an e2v technologies n-channel and p-channel CCD204

    Get PDF
    Comparisons have been made of the relative degradation of charge transfer efficiency in n-channel and p-channel CCDs subjected to proton irradiation. The comparison described in this paper was made using e2v technologies plc. CCD204 devices fabricated using the same mask set. The device performance was compared over a range of temperatures using the same experimental arrangement and technique to provide a like-for-like comparison. The parallel transfer using the p-channel CCD was then optimized using a trap pumping technique to identify the optimal operating conditions at 153 K

    Evaluation of estimators for ill-posed statistical problems subject to multicollinearity

    Get PDF
    Multicollinearity is a significant problem in economic analysis and occurs in any situation where at least two of the explanatory variables in a model are related to one another. The presence of multicollinearity is problematic, as changes in the dependent variable cannot be accurately attributed to individual explanatory variables. It can cause estimated coefficients to be unstable and have high variances, and thus be potentially inaccurate and inappropriate to guide management or policy. Due to this problem, many alternative estimators have been developed for the analysis of multicollinear data. The primary objective of this thesis is to compare and contrast the performance of some of these common estimators, as well as a number of new estimators, and test their prediction accuracy and precision under various circumstances. Through the use of non-trivial Monte Carlo experiments, the estimators are tested under 10 different levels of multicollinearity, with regressors and errors drawn from different distributions (normal, student t, chi-squared, and in the case of errors, mixed Gaussian). Insights are gained through response surface analysis, which is conducted to help summarise the output of these simulations. A number of key findings are identified. The highest levels of mean square error (MSE) are generally given by a Generalised Maximum Entropy estimator with narrow support bounds defined for its coefficients (GMEN) and the One-Step Data Driven Entropy (DDE1) model. Yet, none of the estimators evaluated produced sufficiently high levels of MSE to suggest that they were inappropriate for prediction. The most accurate predictions, regardless of the distributions tested or multicollinearity, were given by Ordinary Least Squares (OLS). The Leuven-2 estimator appeared relatively robust in terms of MSE, being reasonably invariant to changes in condition number, and error distribution. However, it was unstable due to variability in error estimation arising from the arbitrary way that probabilities are converted to coefficient values in this framework. In comparison, MSE values for Leuven-1 were low and far more stable than those reported for Leuven-2. The estimators that produced the least precision risk, as measured through mean square error loss (MSEL), were the GMEN and Leuven-1 estimators. However, the GMEN model requires exogenous information and, as such, is much more problematic to accurately apply in different contexts. In contrast, two models had very poor precision in the presence of multicollinear data, the Two-Step Data Driven Entropy (DDE2) model and OLS, rendering them inappropriate for estimation in such circumstances. Overall, these results highlight that the Leuven-1 estimator is the most appropriate if a practitioner wishes to achieve high prediction accuracy and precision in the presence of multicollinearity. Nevertheless, it is critical that more attention is paid to the theoretical basis of the Leuven-1 estimator, as relating estimated probabilities to coefficients using concepts drawn from the theory of light appears highly subjective. This is illustrated through the differences in empirical results obtained for the Leuven-1 and Leuven-2 estimators

    Simplified charge transfer inefficiency correction in CCDs by trap-pumping

    Get PDF
    A major concern when using Charge-Coupled Devices in hostile radiation environments is radiation induced Charge Transfer Inefficiency. The displacement damage from non-ionising radiation incident on the detector creates defects within the silicon lattice, these defects can capture and hold charge for a period of time dependent on the operating temperature and the type of defect, or “trap species”. The location and type of defect can be determined to a high degree of precision using the trap-pumping technique, whereby background charges are input and then shuffled forwards and backwards between pixels many times and repeated using different transfer timings to promote resonant charge-pumping at particular defect sites. Where the charge transfer timings used in the trap-pumping process are equivalent to the nominal CCD readout modes, a simple “trap-map” of the defects that will most likely contribute to charge transfer inefficiency in the CCD array can be quickly generated. This paper describes a concept for how such a “trap-map” can be used to correct images subject to non-ionising radiation damage and provides initial results from an analytical algorithm and our recommendations for future developments

    Evolution of proton-induced defects in a cryogenically irradiated p-channel CCD

    Get PDF
    P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. This is attributed to the properties of the dominant charge-trapping defect species in p-channel silicon relative to the operating conditions of the CCD. However, precise knowledge of defect parameters is required in order to correct for any induced CTI. The method of single trap-pumping allows us to analyse the defect parameters to a degree of accuracy that cannot be achieved with other common defect analysis techniques such as deep-level transient spectroscopy (DLTS). We have analysed using this method the defect distribution in an e2v p-channel CCD204 irradiated with protons at cryogenic temperature (153K). The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases. The evolution of the defect distribution over time and through each anneal phase provides insight into defect interactions and mobility post-irradiation. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation testing

    In situ trap properties in CCDs: the donor level of the silicon divacancy

    Get PDF
    The silicon divacancy is one of the main defects of concern in radiation damage studies of Charge-Coupled Devices (CCDs) and, being immobile at room temperature, the defect is accessible to a variety of characterisation techniques. As such, there is a large amount of (often conflicting) information in the literature regarding this defect. Here we study the donor level of the divacancy, one of three energy levels which lie between the silicon valence and conduction bands. The donor level of the divacancy acts as a trap for holes in silicon and therefore can be studied through the use of a p-channel CCD. The method of trap-pumping, linked closely to the process of pocket-pumping, has been demonstrated in the literature over the last two years to allow for in-situ analysis of defects in the silicon of CCDs. However, most work so far has been a demonstartion [sic] of the techinique [sic]. We begin here to use the technique for detailed studies of a specific defect centre in silicon, the donor level of the divacancy. The trap density post-irradiation can be found, and each instance of the trap identified independently of all others. Through the study of the trap response at different clocking frequencies one can measure directly the defect emission time constant, and through tracking this at different temperatures, it is possible to use Shockley-Read-Hall theory to calculate the trap energy level and cross-section. A large population of traps, all with parameters consistent with the donor level of the divacancy, has been studied, leading to a measure of the distribution of properties. The emission time constant, energy level and cross-section are found to have relatively large spreads, significantly beyond the small uncertainty in the measurement technique. This spread has major implications on the correction of charge transfer inefficiency effects in space applications in which high precision is required

    Chaotic zone boundary for low free eccentricity particles near an eccentric planet

    Full text link
    We consider particles with low free or proper eccentricity that are orbiting near planets on eccentric orbits. Via collisionless particle integration we numerically find the location of the boundary of the chaotic zone in the planet's corotation region. We find that the distance in semi-major axis between the planet and boundary depends on the planet mass to the 2/7 power and is independent of the planet eccentricity, at least for planet eccentricities below 0.3. Our integrations reveal a similarity between the dynamics of particles at zero eccentricity near a planet in a circular orbit and with zero free eccentricity particles near an eccentric planet. The 2/7 law has been previously explained by estimating the semi-major at which the first order mean motion resonances are large enough to overlap. Orbital dynamics near an eccentric planet could differ due to first order corotation resonances that have strength proportional to the planet's eccentricity. However, we find the corotation resonance width at low free eccentricity is small. Also the first order resonance width at zero free eccentricity is the same as that for a zero eccentricity particle near a planet in a circular orbit. This accounts for insensitivity of the chaotic zone width to planet eccentricity. Particles at zero free eccentricity near an eccentric planet have similar dynamics to those at zero eccentricity near a planet in a circular orbit.Comment: accepted for publication in MNRA
    • 

    corecore