1,075 research outputs found

    On the spectrum of closed k=2 flux tubes in D=2+1 SU(N) gauge theories

    Full text link
    We calculate the energy spectrum of a k=2 flux tube that is closed around a spatial torus, as a function of its length l. We do so for SU(4) and SU(5) gauge theories in 2 space dimensions. We find that to a very good approximation the eigenstates belong to the irreducible representations of the SU(N) group rather than just to its center, Z_N. We obtain convincing evidence that the low-lying states are, for l not too small, very close to those of the Nambu-Goto free string theory (in flat space-time). The correction terms appear to be typically of O(1) in appropriate units, much as one would expect if the bosonic string model were an effective string theory for the dynamics of these flux tubes. This is in marked contrast to the case of fundamental flux tubes where such corrections have been found to be unnaturally small. Moreover we find that these corrections appear to be particularly small when the `phonons' along the string have the same momentum, and large when their momentum is opposite. This provides information about the detailed nature of the interactions in the effective string theory. We have searched for, but not found, extra states that would arise from the excitation of the massive modes presumably associated with the non-trivial structure of the flux tube.Comment: 37 pages, 16 figures, minor changes to text and figure

    The Optical Afterglow of GRB 011211

    Get PDF
    We present early-time optical photometry and spectroscopy of the optical afterglow of the gamma-ray burst GRB 011211. The spectrum of the optical afterglow contains several narrow metal lines which are consistent with the burst occurring at a redshift of 2.140 +/- 0.001. The optical afterglow decays as a power law with a slope of alpha = 0.83 +/- 0.04 for the first approximately two days after the burst at which time there is evidence for a break. The slope after the break is at least 1.4. There is evidence for rapid variations in the R-band light approximately 0.5 days after the burst. These variations suggest that there are density fluctuations near the gamma-ray burst on spatial scales of approximately 40--125 AU. The magnitude of the break in the light curve, the spectral slope, and the rate of decay in the optical, suggest that the burst expanded into an ambient medium that is homogeneous on large scales. We estimate that the local particle density is between approximately 0.1 and 10 cm^{-3} and that the total gamma-ray energy in the burst was 1.2--1.9 x 10^{50} erg. This energy is smaller than, but consistent with, the ``standard'' value of (5 +/- 2) x 10^{50} erg. Comparing the observed color of the optical afterglow with predictions of the standard beaming model suggests that the rest-frame V-band extinction in the host galaxy is less than approximately 0.03 mag.Comment: 17 pages, 4 figures, AASTeX 5.02, to appear in AJ Referee's report incorporated, minor changes in the tex

    Interacting classical and quantum particles

    Full text link
    We apply Hall and Reginatto's theory of interacting classical and quantum ensembles to harmonically coupled particles, with a view to understanding its experimental implications. This hybrid theory has no free parameters and makes distinctive predictions that should allow it to be experimentally distinguished from quantum mechanics. It also bears on the questions of quantum measurement and quantum gravity.Comment: 7 pages, 6 figure

    Electron multiplication CCD detector technology advancement for the WFIRST-AFTA coronagraph

    Get PDF
    The WFIRST-AFTA (Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset) is a NASA space observatory. It will host two major astronomical instruments: a wide-field imager (WFI) to search for dark energy and carry out wide field near infrared (NIR) surveys, and a coronagraph instrument (CGI) to image and spectrally characterize extrasolar planets. In this paper, we discuss the work that has been carried out at JPL in advancing Electron Multiplying CCD (EMCCD) technology to higher flight maturity, with the goal of reaching a NASA technology readiness level of 6 (TRL-6) by early-to-mid 2016. The EMCCD has been baselined for both the coronagraph's imager and integral field spectrograph (IFS) based on its sub-electron noise performance at extremely low flux levels - the regime where the AFTA CGI will operate. We present results from a study that fully characterizes the beginning of life performance of the EMCCD. We also discuss, and present initial results from, a recent radiation test campaign that was designed and carried out to mimic the conditions of the WFIRST-AFTA space environment in an L2 orbit, where we sought to assess the sensor's end of life performance, particularly degradation of its charge transfer efficiency, in addition to other parameters such as dark current, electron multiplication gain, clock induced charge and read noise

    Korean national Program expedition confirms rich gas hydrate deposit in the Ulleung Basin, East Sea

    Get PDF

    A 2dF spectroscopic study of globular clusters in NGC 5128: Probing the formation history of the nearest giant Elliptical

    Full text link
    We have performed a spectroscopic study of globular clusters (GCs) in the giant elliptical NGC 5128 using the 2dF facility at the Anglo-Australian telescope. We obtained integrated optical spectra for a total of 254 GCs, 79 of which are newly confirmed on the basis of their radial velocities and spectra. In addition, we obtained an integrated spectrum of the galaxy starlight along the southern major axis. We derive an empirical metallicity distribution function (MDF) for 207 GCs (~14 of the estimated total GC system) based upon Milky Way GCs. This MDF is multimodal at high statistical significance with peaks at [Z/H]~-1.3 and -0.5. A comparison between the GC MDF and that of the stellar halo at 20 kpc (~4 Reff) reveals close coincidence at the metal-rich ends of the distributions. However, an inner 8 kpc stellar MDF shows a clear excess of metal-rich stars when compared to the GCs. We compare a higher S/N subsample (147 GCs) with two stellar population models which include non-solar abundance ratio corrections. The vast majority of our sample (~90%) appears old, with ages similar to the Milky Way GC system. There is evidence for a population of intermediate-age (~4-8 Gy) GCs (<15% of the sample) which are on average more metal-rich than the old GCs. We also identify at least one younger cluster (~1-2 Gy) in the central regions of the galaxy. Our observations are consistent with a picture where NGC 5128 has undergone at least two mergers and/or interactions involving star formation and limited GC formation since z=1, however the effect of non-canonical hot stellar populations on the integrated spectra of GCs remains an outstanding uncertainty in our GC age estimates.Comment: 17 figures, some long table

    SO(2N) and SU(N) gauge theories in 2+1 dimensions

    Full text link
    We perform an exploratory investigation of how rapidly the physics of SO(2N) gauge theories approaches its N=oo limit. This question has recently become topical because SO(2N) gauge theories are orbifold equivalent to SU(N) gauge theories, but do not have a finite chemical potential sign problem. We consider only the pure gauge theory and, because of the inconvenient location of the lattice strong-to-weak coupling 'bulk' transition in 3+1 dimensions, we largely confine our numerical calculations to 2+1 dimensions. We discuss analytic expectations in both D=2+1 and D=3+1, show that the SO(6) and SU(4) spectra do indeed appear to be the same, and show that a number of mass ratios do indeed appear to agree in the large-N limit. In particular SO(6) and SU(3) gauge theories are quite similar except for the values of the string tension and coupling, both of which differences can be readily understood.Comment: 27 pages, 9 figure

    Results of the 2016 Indianapolis Biodiversity Survey, Marion County, Indiana

    Get PDF
    Surprising biodiversity can be found in cities, but urban habitats are understudied. We report on a bioblitz conducted primarily within a 24-hr period on September 16 and 17, 2016 in Indianapolis, Indiana, USA. The event focused on stretches of three waterways and their associated riparian habitat: Fall Creek (20.6 ha; 51 acres), Pleasant Run (23.5 ha; 58 acres), and Pogue’s Run (27.1 ha; 67 acres). Over 75 scientists, naturalists, students, and citizen volunteers comprised 14 different taxonomic teams. Five hundred ninety taxa were documented despite the rainy conditions. A brief summary of the methods and findings are presented here. Detailed maps of survey locations and inventory results are available on the Indiana Academy of Science website (https://www.indianaacademyofscience.org/)
    • …
    corecore