14 research outputs found
Seasonal Dependence of SMAP Radiometer-Based Soil Moisture Performance as Observed over Core Validation Sites
The NASA SMAP (Soil Moisture Active Passive) mission provides a global coverage of soil moisture measurements based on its L-band microwave radiometer every 2-3 days at about 40 km resolution. The soil moisture retrieval algorithms model the brightness temperature as a function of soil moisture, surface conditions and vegetation. External data sources inform the algorithms about the surface conditions and vegetation, which enable the retrieval of soil moisture. The inversion process contains uncertainties related to radiometer measurements, forward model assumptions and ancillary data sources. This study focuses on the uncertainties that depend on the seasonal evolution of the surface conditions and vegetation. This study compares the SMAP and core validation site (CVS) soil moisture values over a period of three years to extract the evolution of performance metrics over time. The analysis showed that most CVS that include managed agriculture exhibit significant time-dependent seasonal bias. This bias was linked to seasonal temperature cycle, which is a proxy to several features that can cause seasonally dependent errors in the SMAP product
GCOM-W AMSR2 Soil Moisture Product Validation Using Core Validation Sites
The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W). AMSR2 has filled the gap in passive microwave observations left by the loss of the Advanced Microwave Scanning RadiometerEarth Observing System (AMSR-E) after almost 10 years of observations. Both missions provide brightness temperature observations that are used to retrieve soil moisture estimates at the near surface. A merged AMSR-E and AMSR2 data product will help build a consistent long-term dataset; however, before this can be done, it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on the validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites around the world. A total of three soil moisture products that rely on different algorithms were evaluated; the Japan Aerospace Exploration Agency (JAXA) soil moisture algorithm, the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). JAXA, SCA and LPRM soil moisture estimates capture the overall climatological features. The spatial features of the three products have similar overall spatial structure. The JAXA soil moisture product shows a lower dynamic range in the retrieved soil moisture with a satisfactory performance matrix when compared to in situ observations (ubRMSE0.059 m3m3, Bias-0.083 m3m3, R0.465). The SCA performs well over low and moderately vegetated areas (ubRMSE0.053 m3m3, Bias-0.039 m3m3, R0.549). The LPRM product has a large dynamic range compared to in situ observations with a wet bias (ubRMSE0.094 m3m3, Bias0.091 m3m3, R0.577). Some of the error is due to the difference in observation depth between the in situ sensors (5 cm) and satellite estimates (1 cm). Results indicate that overall the JAXA and SCA have the best performance based upon the metrics considered
Development and Validation of The SMAP Enhanced Passive Soil Moisture Product
Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center
Recommended from our members
Rangeland Brush Estimation Tool (RaBET): An Operational Remote Sensing-Based Application for Quantifying Woody Cover on Western Rangelands
Much of the western United States is covered by rangelands used for grazing and wildlife. Woody plant cover is increasing in areas historically covered by grasslands and can cause numerous problems, including losses in wildlife habitat, forage for grazing, and overall losses in soil health. Land managers and conservationists are working to control these increases in woody plants, but need tools to help determine target areas to focus efforts and resources where they are most needed. In this work, we present RaBET (Rangeland Brush Estimation Tool), which uses transparent, well-understood methodologies with remotely sensed data to map woody canopy cover across large areas of rangelands. We demonstrate that our process produced more accurate results than two currently available tools based on advanced machine learning techniques. We compare two methods of map validation: traditional field methods of plant canopy measurements; and aircraft-based photography, which decreases the amount of time and resources needed. RaBET is a remote sensing-based application for obtaining repeatable, accurate measures of woody cover to aid land managers and conservationists in the control of woody plants on rangelands. © 2023 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
An Assessment of the Differences Between Spatial Resolution and Grid Size for the SMAP Enhanced Soil Moisture Product over Homogeneous Sites
Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled to a fixed Earth grid that facilitates their use in applications. In many cases the grid size is finer than the actual spatial resolution of the observation, and often this difference is not well understood by the user. Here, this issue was examined for the Soil Moisture Active Passive (SMAP) enhanced version of the passive-based soil moisture product, which has a grid size of 9-km and a nominal spatial resolution of 33-km. In situ observations from core validation sites were used to compute comparison metrics. For sites that satisfied the established reliability and scaling criteria, the impact of validating the 9-km grid product with in situ data collected over a 9-km versus a 33-km domain was very small for the sites studied (0.039 cu. m/cu. m unbiased root mean square difference for the 9-km case versus 0.037 cu. m/cu. m for the 33-km case). This result does not mean that the resolution of the product is 9-km but that for the conditions studied here the soil moisture estimated from in situ observations over 9-km is a close approximation of the soil moisture estimated from in situ observations over the 33-km resolution. The implication is that using the enhanced SMAP product at its grid resolution of 9-km should not introduce large errors in most applications