26 research outputs found

    A lattice model for the line tension of a sessile drop

    Full text link
    Within a semi--infinite thre--dimensional lattice gas model describing the coexistence of two phases on a substrate, we study, by cluster expansion techniques, the free energy (line tension) associated with the contact line between the two phases and the substrate. We show that this line tension, is given at low temperature by a convergent series whose leading term is negative, and equals 0 at zero temperature

    A compact null set containing a differentiability point of every Lipschitz function

    Full text link
    We prove that in a Euclidean space of dimension at least two, there exists a compact set of Lebesgue measure zero such that any real-valued Lipschitz function defined on the space is differentiable at some point in the set. Such a set is constructed explicitly.Comment: 28 pages; minor modifications throughout; Lemma 4.2 is proved for general Banach space rather than for Hilbert spac

    SURFACE INDUCED FINITE-SIZE EFFECTS FOR FIRST ORDER PHASE TRANSITIONS

    Full text link
    We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems like small magnetic clusters, we consider models with free boundary conditions. For a field driven transition with two coexisting phases at the infinite volume transition point h=hth=h_t, we prove that the low temperature finite volume magnetization m_{\free}(L,h) per site in a cubic volume of size LdL^d behaves like m_\free(L,h)=\frac{m_++m_-}2 + \frac{m_+-m_-}2 \tanh \bigl(\frac{m_+-m_-}2\,L^d\, (h-h_\chi(L))\bigr)+O(1/L), where hχ(L)h_\chi(L) is the position of the maximum of the (finite volume) susceptibility and m±m_\pm are the infinite volume magnetizations at h=ht+0h=h_t+0 and h=ht0h=h_t-0, respectively. We show that hχ(L)h_\chi(L) is shifted by an amount proportional to 1/L1/L with respect to the infinite volume transitions point hth_t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boun\- dary conditons, which for an asymmetric transition with two coexisting phases is proportional only to 1/L2d1/L^{2d}. One also consider the position hU(L)h_U(L) of the maximum of the so called Binder cummulant U_\free(L,h). While it is again shifted by an amount proportional to 1/L1/L with respect to the infinite volume transition point hth_t, its shift with respect to hχ(L)h_\chi(L) is of the much smaller order 1/L2d1/L^{2d}. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L2d1/L^{2d} term, the relative shift is the same as that for periodic boundary conditions.Comment: 65 pages, amstex, 1 PostScript figur

    On the non-separable descriptive theory

    Get PDF

    Local and global σ\sigma-cone porosity

    No full text

    A supplement to the paper "Differentiable roads for real functions" by J. G. Ceder

    No full text

    Zdeněk Frolík and the descriptive theory of sets and spaces

    Get PDF

    Local and global σ\sigma-cone porosity

    No full text

    Non-separable analytic spaces and measurability

    Get PDF

    Radon spaces which are not σ\sigma-fragmentable

    No full text
    corecore