6 research outputs found

    Identifying high-confidence capture Hi-C interactions using CHiCANE

    Full text link
    The ability to identify regulatory interactions that mediate gene expression changes through distal elements, such as risk loci, is transforming our understanding of how genomes are spatially organized and regulated. Capture Hi-C (CHi-C) is a powerful tool to delineate such regulatory interactions. However, primary analysis and downstream interpretation of CHi-C profiles remains challenging and relies on disparate tools with ad-hoc input/output formats and specific assumptions for statistical modeling. Here we present a data processing and interaction calling toolkit (CHiCANE), specialized for the analysis and meaningful interpretation of CHi-C assays. In this protocol, we demonstrate applications of CHiCANE to region capture Hi-C (rCHi-C) and promoter capture Hi-C (pCHi-C) libraries, followed by quality assessment of interaction peaks, as well as downstream analysis specific to rCHi-C and pCHi-C to aid functional interpretation. For a typical rCHi-C/pCHi-C dataset this protocol takes up to 3 d for users with a moderate understanding of R programming and statistical concepts, although this is dependent on dataset size and compute power available. CHiCANE is freely available at https://cran.r-project.org/web/packages/chicane

    3D Functional Genomics Screens Identify CREBBP as a Targetable Driver in Aggressive Triple-Negative Breast Cancer

    No full text
    Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors

    Surgery for Urge Urinary Incontinence: Cystoplasty, Diversion

    No full text

    Kolon und Rektum

    No full text
    corecore