25 research outputs found

    Author Correction: Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil.

    Get PDF
    In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function

    4,6-Bis(diphenyl­phosphan­yl)-2,8-di­methyl­phenoxathiin dichloro­methane monosolvate

    Get PDF
    The title compound, C38H30OP2S·CH2Cl2, belongs to the xanthene family of ligands containing S- and O-donor atoms in the central heterocylic ring. Positions 2 and 8 on the xanthene backbone are functionalized with methyl groups to allow for the selective functionalization of the backbone at positions 4 and 6 with diphenyl­phosphanyl units. The title compound shows a significant ‘roof-like’ bending along the axis of planarity involving the O- and S-donor atoms and the benzene rings, resulting in a dihedral angle between the mean planes of the benzene rings of 32.88 (13)°

    4,6-Bis(diphenyl­phosphan­yl)dibenzo[b,d]furan

    Get PDF
    The asymmetric unit of the title compound, C36H26OP2, comprises two mol­ecules which have slightly different conformations of the phenyl ring substituents. In both mol­ecules, the dibenzofuran unit is close to being planar, with dihedral angles of 3.20 (3) and 1.86 (2)° for the two mol­ecules. Its planarity affects the intra­molecular distances between P atoms, with P⋯P distances of 5.574 (2) and 5.485 (2) Å for the two mol­ecules

    Drosophila ß Heavy -Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil

    Get PDF
    Abstract: In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function

    Drosophila ß Heavy -Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil

    Get PDF
    Abstract: In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function

    Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis

    Get PDF
    Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD). There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH). DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30) or without (n=29) DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001), lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01), and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03) were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001) and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001) were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding

    How Long and Low Can You Go? Effect of Conformation on the Risk of Thoracolumbar Intervertebral Disc Extrusion in Domestic Dogs

    Get PDF
    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for ‘long and low’ morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders

    Heritability and Genome-Wide Association Analyses of Sleep Duration in Children:The EAGLE Consortium

    Get PDF
    STUDY OBJECTIVES: Low or excessive sleep duration has been associated with multiple outcomes, but the biology behind these associations remains elusive. Specifically, genetic studies in children are scarce. In this study, we aimed to: (1) estimate the proportion of genetic variance of sleep duration in children attributed to common single nucleotide polymorphisms (SNPs), (2) identify novel SNPs associated with sleep duration in children, and (3) investigate the genetic overlap of sleep duration in children and related metabolic and psychiatric traits.METHODS: We performed a population-based molecular genetic study, using data form the EArly Genetics and Life course Epidemiology (EAGLE) Consortium. 10,554 children of European ancestry were included in the discovery, and 1,250 children in the replication phase.RESULTS: We found evidence of significant but modest SNP heritability of sleep duration in children (SNP h(2) 0.14, 95% CI [0.05, 0.23]) using the LD score regression method. A novel region at chromosome 11q13.4 (top SNP: rs74506765, P = 2.27e-08) was associated with sleep duration in children, but this was not replicated in independent studies. Nominally significant genetic overlap was only found (rG = 0.23, P = 0.05) between sleep duration in children and type 2 diabetes in adults, supporting the hypothesis of a common pathogenic mechanism.CONCLUSIONS: The significant SNP heritability of sleep duration in children and the suggestive genetic overlap with type 2 diabetes support the search for genetic mechanisms linking sleep duration in children to multiple outcomes in health and disease.</p

    Antibiotic treatment, different fly medium and inhibition of apoptosis can rescue eclosion, and melanization defects after hemocyte depletion.

    No full text
    <p>(A) Both Hid and Grim lines showed significantly higher pupal lethality (measured as a drop in eclosure rate in %) than controls; antibiotic treatment rescued Hid and Grim induced lethality. Lethality of Hid-expressing larvae was also affected by using different fly media. SF—standard fly food (potato source). DIM—Drosophila instant medium (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136593#pone.0136593.s009" target="_blank">S2 Table</a> for the composition of the food, both parental lines were homozygous). (B) Coexpression of UAS-<i>grim28</i>.<i>2</i> with UAS-<i>p35</i> (caspase inhibitor) in the same larva rescued pupal lethality. Dashed lines indicate the expected frequency of eclosing flies for the crosses (25 and 50% respectively). (C) A higher melanotic spot frequency was found in adults in both Hid- and Grim-expressing lines compared to controls. Antibiotic treatment rescued melanotic mass formation in Hid- but not in Grim-expressing lines. The melanotic spot frequency was compared between Hid, Grim and controls using standard fly food (bracket 1), the influence of the food source (bracket 2, no significant differences) and the antibiotic treatment, (bracket 3, significant only for Hid-expressing larvae). Data presented are means ± SD; t test: * p<0.05; **p<0.01.</p
    corecore