126 research outputs found

    Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Get PDF
    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage

    Process Optimization and Upscaling of Spray-Dried Drug-Amino acid Co-Amorphous Formulations

    Get PDF
    The feasibility of upscaling the formulation of co-amorphous indomethacin-lysine from lab-scale to pilot-scale spray drying was investigated. A 22 full factorial design of experiments (DoE) was employed at lab scale. The atomization gas flow rate (Fatom, from 0.5 to 1.4 kg/h) and outlet temperature (Tout, from 55 to 75 °C) were chosen as the critical process parameters. The obtained amorphization, glass transition temperature, bulk density, yield, and particle size distribution were chosen as the critical quality attributes. In general, the model showed low Fatom and high Tout to be beneficial for the desired product characteristics (a co-amorphous formulation with a low bulk density, high yield, and small particle size). In addition, only a low Fatom and high Tout led to the desired complete co-amorphization, while a minor residual crystallinity was observed with the other combinations of Fatom and Tout. Finally, upscaling to a pilot scale spray dryer was carried out based on the DoE results; however, the drying gas flow rate and the feed flow rate were adjusted to account for the different drying chamber geometries. An increased likelihood to achieve complete amorphization, because of the extended drying chamber, and hence an increased residence time of the droplets in the drying gas, was found in the pilot scale, confirming the feasibility of upscaling spray drying as a production technique for co-amorphous systems

    The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formers

    Get PDF
    The increasing number of poorly water-soluble drug candidates in pharmaceutical development is a major challenge. Enabling techniques such as amorphization of the crystalline drug can result in supersaturation with respect to the thermodynamically most stable form of the drug, thereby possibly increasing its bioavailability after oral administration. The ease with which such crystalline drugs can be amorphized is known as their glass forming ability (GFA) and is commonly described by the critical cooling rate. In this study, the supersaturation potential, i.e., the maximum apparent degree of supersaturation, of poor and good glass formers is investigated in the absence or presence of either hypromellose acetate succinate L-grade (HPMCAS-L) or vinylpyrrolidine-vinyl acetate copolymer (PVPVA64) in fasted state simulated intestinal fluid (FaSSIF). The GFA of cinnarizine, itraconazole, ketoconazole, naproxen, phenytoin, and probenecid was determined by melt quenching the crystalline drugs to determine their respective critical cooling rate. The inherent supersaturation potential of the drugs in FaSSIF was determined by a solvent shift method where the respective drugs were dissolved in dimethyl sulfoxide and then added to FaSSIF. This study showed that the poor glass formers naproxen, phenytoin, and probenecid could not supersaturate on their own, however for some drug:polymer combinations of naproxen and phenytoin, supersaturation of the drug was enabled by the polymer. In contrast, all of the good glass formers—cinnarizine, itraconazole, and ketoconazole—could supersaturate on their own. Furthermore, the maximum achievable concentration of the good glass formers was unaffected by the presence of a polymer

    Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs.

    Get PDF
    Recrystallization of amorphous drugs is currently limiting the simple approach to improve solubility and bioavailability of poorly water-soluble drugs by amorphization of a crystalline form of the drug. In view of this, molecular mobility, α-relaxation and β-relaxation processes with the associated transition temperatures Tgα and Tgβ, was investigated using dynamic mechanical analysis (DMA). The correlation between the transition temperatures and the onset of recrystallization for nine amorphous drugs, stored under dry conditions at a temperature of 296 K, was determined. From the results obtained, Tgα does not correlate with the onset of recrystallization under the experimental storage conditions. However, a clear correlation between Tgβ and the onset of recrystallization was observed. It is shown that at storage temperature below Tgβ, amorphous nifedipine retains its amorphous form. On the basis of the correlation, an empirical correlation is proposed for predicting the onset of recrystallization for drugs stored at 0% RH and 296 K

    The significance of the amorphous potential energy landscape for dictating glassy dynamics and driving solid-state crystallisation.

    Get PDF
    The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, Tg, can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why Tg can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur
    • …
    corecore