204 research outputs found

    Modeling the effect of anisotropic pressure on tokamak plasmas normal modes and continuum using fluid approaches

    Full text link
    Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three fluid closure models: the single adiabatic model (SA), the double adiabatic model (CGL) and the incompressible model. A study on the plasma continuous spectrum shows that in low beta, large aspect ratio plasma, the main impact of anisotropy lies in the modification of the BAE gap and the sound frequency, if the q profile is conserved. The SA model preserves the BAE gap structure as ideal MHD, while in CGL the lowest frequency branch does not touch zero frequency at the resonant flux surface where m+nq=0m+nq=0, inducing a gap at very low frequency. Also, the BAE gap frequency with bi-Maxwellian distribution in both model becomes higher if p⊥>p∥p_\perp > p_\parallel with a q profile dependency. As a benchmark of the code, we study the m/n=1/1 internal kink mode. Numerical calculation of the marginal stability boundary with bi-Maxwellian distribution shows a good agreement with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov. J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if p∥<p⊥(p∥>p⊥)p_\parallel < p_\perp (p_\parallel > p_\perp)

    Analysing the impact of anisotropy pressure on tokamak equilibria

    Get PDF
    Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With p∥/p⊥≈1.5p_\parallel/p_\perp \approx 1.5, p⊥p_\perp can vary 20% on s=0.5s=0.5 flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which p∗=(p∥+p⊥)/2p^*=(p_\parallel + p_\perp)/2, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with p∥/p⊥≈1.25p_\parallel/p_\perp \approx 1.25, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    Comparison of methods for numerical calculation of continuum damping

    Get PDF
    Continuum resonance damping is an important factor in determining the stability of certain global modes in fusion plasmas. A number of analytic and numerical approaches have been developed to compute this damping, particularly in the case of the toroidicity-induced shear Alfv\'en eigenmode. This paper compares results obtained using an analytical perturbative approach with those found using resistive and complex contour numerical approaches. It is found that the perturbative method does not provide accurate agreement with reliable numerical methods for the range of parameters examined. This discrepancy exists even in the limit where damping approaches zero. When the perturbative technique is implemented using a standard finite element method, the damping estimate fails to converge with radial grid resolution. The finite elements used cannot accurately represent the eigenmode in the region of the continuum resonance, regardless of the number of radial grid points used.Comment: 19 pages, 9 figure

    The shear Alfv\'en continuum with a magnetic island chain in tokamak plasmas

    Full text link
    The shear Alfv\'en continuum spectrum is studied for a tokamak with a single island chain using the ideal Magnetohydrodynamics (MHD) theory. We have taken into account the toroidal geometry and toroidal mode coupling with the island considered as a highly-shaped stellarator. Various new frequency gaps open up inside the island due to its asymmetry both poloidally and toroidally, such as the Mirror-induced Alfv\'en Eigenmode (MAE) gap and the Helicity-induced Alfv\'en Eigenmode (HAE) gap. We have shown that the MAE gap acts as the continuation of the outside Toroidal Alfv\'en Eigenmode (TAE) gap into the island. However, the combined TAE/MAE gap is getting narrower as the island grows, leaving only half of its original width with a moderate island size as much as 3.2% of the minor radius. In addition, the two-dimensional eigenfunction of the continuum mode on the lower tip of the MAE gap now has highly localised structures around the island's long axis, contrary to the usual oscillatory global solutions found with no or a low level of toroidal asymmetry - an indication of the continuous spectrum becoming discrete and dense. These results have implications for the frequency, mode structure and continuum damping of global TAEs residing in the gap

    Relaxed plasma equilibria and entropy-related plasma self-organization principles

    Get PDF
    The concept of plasma relaxation as a constrained energy minimization is reviewed. Recent work by the authors on generalizing this approach to partially relaxed threedimensional plasma systems in a way consistent with chaos theory is discussed, with a view to clarifying the thermodynamic aspects of the variational approach used. Other entropy-related approaches to finding long-time steady states of turbulent or chaotic plasma systems are also briefly reviewed

    THE POTENTIAL FOR AUSTRALIAN INVOLVEMENT IN ITER

    Get PDF

    Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Full text link
    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with arXiv:1401.307
    • …
    corecore