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Abstract: The concept of plasma relaxation as a constrained energy minimization is re-
viewed. Recent work by the authors on generalizing this approach to partially relaxed three-
dimensional plasma systems in a way consistent with chaos theory is discussed, with a view to
clarifying the thermodynamic aspects of the variational approach used. Other entropy-related
approaches to finding long-time steady states of turbulent or chaotic plasma systems are also
briefly reviewed.
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1. Introduction

Magnetically confined fusion plasmas are thermodynamically nonequilibrium systems, where parti-
cles and energy are injected (or generated by fusion reactions) deep in the plasma, providing heat which
flows towards the much colder edge region. This creates a kind of heat engine that drives both turbulent
flows and more laminar zonal flows, somewhat analogous to the way solar energy deposition near the
equator drives the dynamics of planetary atmospheres and oceans (see Fig. 1).

Confinement of strongly heated plasmas against turbulent diffusion across the magnetic field has been
found, surprisingly, to improve in some circumstances due to the spontaneous formation of transport
barriers related to strongly sheared zonal flows [1] driven by [2, 3] turbulence arising from instabilities
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Figure 1. Analogue systems exhibiting self-organization in their quasi-two-dimensional tur-
bulent dynamics: Left panel shows Cassini Jupiter Portrait (NASA image PIA04866), show-
ing the strongly zonal nature of the solar-energy-driven turbulent atmospheric dynamics.
Right panel (courtesy Jeff Candy http://fusion.gat.com/theory/Gyro) shows a simulation of
the analogous turbulent dynamics in a tokamak plasma, driven by heat primarily coming
from the central part of the plasma (not shown). (N.B. the zonal direction in this case is the
short way around the torus.

that tap the large free energy provided by the heating and fueling of the plasma. The best-known example
is the Low to High (L-H) confinement transition, where the transport barrier forms at the edge of the
plasma, but internal transport barriers have been found as well. Similar sheared-zonal-flow transport
barriers also occur in the atmosphere [1], for instance at the edges of the equatorial jet and the polar
vortices.

The type of plasma turbulence referred to above is driven by temperature and density gradients, caus-
ing low-frequency plasma instabilities of the drift wave class (analogous in geophysics to Rossby waves
[4, 5]). These modes have little effect on the magnetic field but degrade confinement by eddy motions
transporting plasma across the magnetic field lines.

Another type of instability, of the tearing mode class, driven by electric currents in the plasma, gives
rise to electromagnetic turbulence. These modes cause magnetic reconnection, changing the topology of
magnetic field lines. This effect is also potentially deleterious to plasma confinement because transport
along magnetic field lines is very rapid. Toroidal magnetic confinement systems are designed with the
intent that magnetic field lines stay on topologically toroidal surfaces (invariant tori in the language of
Hamiltonian nonlinear dynamics [6, 7]), but field-line tearing can destroy such surfaces and give rise to
chaotic regions that allow anomalous transport along the magnetic field lines.

Because of the complexity of these phenomena, modelling the long-time behaviour of a fusion plasma
ab initio is very difficult and various quasi-thermodynamic variational approaches [8] have been pro-
posed to predict the steady state to which a plasma will relax given some global constraints.

In Sec. 2 we review the variational principle first introduced in astrophysics by Woltjer and developed
physically and mathematically in the fusion context by Taylor and other authors. We then, in Sec. 3, in-

http://fusion.gat.com/theory/Gyro
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dicate how this approach is being extended to three-dimensional magnetic confinement systems, spelling
out the (very elementary) thermodynamics involved in more detail than elsewhere in the literature. In
Sec. 4 we mention very briefly other approaches that may have application in plasma physics, and point
the way to future research in Sec. 5.

2. The plasma relaxation concept

Although plasmas are definitely not in global thermal equilibrium, we assume that most degrees of
freedom relax quickly. Thus, after an initial transient, the system reaches a statistical quasi-equilibrium
characterized by only a few parameters [9], which evolve slowly due, inter alia, to the smallness of
flows of matter and energy between the plasma and the outside world over the short relaxation timescale.
Relaxation theory describes equilibrium states of a system on an intermediate timescale, long compared
with relaxation times, but short compared with heating and confinement times. Thus we take the plasma
to be closed and thermally isolated and freeze the slow parameters, imposing them as constraints.

Figure 2. Constraint sets, spaces of allowed variations, and equilibrium states: Illustrating
how broadening the space of allowed variation narrows the class of equilibria.
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We shall seek a static equilibrium—we assume the plasma relaxes to a state with no mass flow. Also,
we model the plasma as a single magnetohydrodynamic (MHD) fluid, a crude but surprisingly good
approximation for the purpose of constructing background equilibrium solutions on top of which more
sophisticated physics can be modelled. Finally, we use only constraints that are conserved in ideal MHD
(ideal here meaning a single-fluid, inviscid, electrically perfectly conducting, perfect gas model). The
general variational theory of ideal-MHD equilibria was enunciated by Kruskal and Kulsrud [10], basing
their theory on the minimization of the total plasma energy, electromagnetic plus kinetic:

W ≡
∫
P

(
B2

2µ0

+
p

γ − 1

)
dτ , (1)

subject to the full set of ideal-MHD constraints. Here the plasma volume P is assumed to be bounded by
a perfectly conducting wall, dτ denotes a volume element, B is the magnetic field strength (SI units—µ0

is the permeability of free space) p is the plasma pressure [11], and γ ≡ cp/cv is the ratio of specific
heats [so the internal energy of the plasma is U =

∫
pdτ/(γ − 1)] We likewise base our variational
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principle on the minimization of W [12], and, because we use constraints that are ideal-MHD invariants,
our equilibria are automatically a subset of those treated by Kruskal and Kulsrud. This approach is
analogous to the Energy-Casimir method [13, p. 511], often called Arnold’s method, and is illustrated
schematically in Fig. 2. It is the conceptual basis for our generalization of relaxation theory discussed in
the next section.

Woltjer [14] observed that the “magnetic helicity”

K ≡ 1

2

∫
P

A ·B dτ , (2)

where A is the vector potential such that B = ∇×A, is an ideal-MHD invariant and used this as the
only constraint, giving a constant-pressure equilibrium with a force-free Beltrami field,

∇×B = µB , (3)

as Euler–Lagrange equation (the constant µ being a Lagrange multiplier).
Taylor [15, 16] argued that the helicity K is the “most conserved” invariant for a plasma in which

turbulence causes field-line reconnection and showed that the Beltrami solutions modelled the results
from the UK Zeta experiment well.

The Woltjer-Taylor relaxation approach has been generalized to two-fluid Hall MHD by Yoshida
et al. [17, 18] using an additional helicity constraint involving both the magnetic field and the fluid
vorticity. Also, Ito and Yoshida [19] developed a statistical mechanical form of relaxation theory using
the Shannon or Rényi entropy, and Minardi [20] has derived the force-free relaxed state from an argument
based on his magnetic entropy concept.

Figure 3. H-1 National Facility heliac stellarator at the Australian National University. The
strongly nonaxisymmetric, helically deformed toroidal plasma is indicated in red.
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3. Nonuniform relaxation

The work mentioned in the previous section assumed that the plasma relaxes uniformly throughout
its volume, which is both undesirable from a confinement point of view and unrealistic in all but the
most turbulent experiments. To allow spatially nonuniform relaxation to be modelled, Bhattarcharjee
and Dewar [21] expanded the set of ideal-MHD invariants used as constraints in the minimization of W
by taking moments of A ·B with ideal-MHD-invariant weight functions that were smooth functions of
position.

To be more precise, in this early work the magnetic field, which can be described as a Hamiltonian
dynamical system, was assumed to be integrable, so the plasma volume was foliated by invariant tori.
Thus the weight functions were taken to be smooth functions of the flux threading these tori. How-
ever, the assumption of integrability is appropriate only for systems with a continuous symmetry (known
as two-dimensional systems because of the existence of an ignorable coordinate). This is a reasonable
assumption for tokamaks, which are, neglecting the discreteness of the coils providing the toroidal mag-
netic field, axisymmetric. These machines rely on a large toroidal plasma current to provide the poloidal
magnetic field required for confinement, and this current is a potential source of reconnection-causing
instabilities, including major disruptions of the plasma.

In the class of machines known as stellarators (e.g. Fig. 3), external coils are used instead of the
toroidal plasma current, producing a more quiescent plasma but at the expense of axisymmetry. It is the
development of a theory of MHD equilibria in stellarators, one which takes into account the problem of
field-line chaos, that is the main motivation for our current work on finding a generalization of variational
relaxation theory to three-dimensional systems.

Figure 4. Nested annular toroidal relaxation regions Pi and vacuum region V separated by
KAM transport barriers, Ii, as described in the text. Also shown are arbitrary poloidal and
toroidal angles, θ and ζ , respectively, which allow the toroidal interfaces Ii to be specified
parametrically by r = ri(θ, ζ).
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A nonaxisymmetric system is generically not integrable—there will be islands and chaotic regions in
the magnetic field of a stellarator. (By chaotic magnetic field region we simply mean a volume filled
ergodically by a single field line.) Since transport along magnetic field lines, parallel transport, is very
rapid in a hot plasma [9], the temperature, density and pressure will rapidly become uniform in a chaotic
region.

However, the Kolmogorov-Arnol’d-Moser (KAM) theorem (e.g. [6, p. 330] or [7, p. 174]) gives
reason to believe that some invariant tori survive smooth perturbation away from integrability, provided
their winding number (rotational transform in magnetic confinement jargon) is sufficiently irrational that
they obey a Diophantine criterion relating to approximation by sequences of rationals. While the mag-
netic field can be described by a Hamiltonian, it cannot simply be written in the standard form assumed
in proving the KAM theorem: H0 + εH1, with H0 an integrable field and H1 a known perturbation. This
is because plasma currents, as yet unknown, also change with geometric perturbation and they modify
the Hamiltonian. Thus the KAM theorem, as normally understood, is not directly applicable to this
Hamiltonian. However, generalizing previous work [22, 23], we have studied a simpler Hamiltonian
problem associated with force balance across a fixed KAM barrier that shows the rotational transforms
on either side of such a surface must be strongly irrational, as in KAM theory.

By definition, magnetic field lines cannot cross an invariant torus, so such a torus will separate chaotic
regions of the plasma and be impermeable to parallel transport, allowing a pressure differential to exist
between the regions. We proceed on the assumption that some invariant tori Ii do exist (Fig. 4), and,
for simplicity, assume maximal chaos in the regions Pi between them, so that the pressure pi in each
such region is constant. We term such pressure-jump-sustaining interfaces, which can be thought of as
impermeable ideal-MHD membranes, KAM barriers.

Thus we have recently proposed [24] that the generalization of the Woltjer-Taylor approach appropri-
ate to three-dimensional geometry is the minimization of the total plasma energy

W ≡
∑
i

(∫
Pi

B2

2µ0

dτ +
piVi
γ − 1

)
+

∫
V

B2

2µ0

dτ (4)

subject to the helicity constraints Ki = const, where Ki is defined as in Eq. (2) with P replaced by Pi,
and Vi is the volume of region Pi. The magnetic fluxes threading the Pi are conserved holonomically by
restricting allowed (Eulerian) variations in A at the boundaries ∂Pi to be of the form

δA = δri×B + δani +∇δχ on Si, (5)

where δri is the variation in the position vector r = ri(θ, ζ) (see Fig. 4) of a point on the boundary, ni is
the unit normal, δa is an arbitrary function that allows nonideal variations, and δχ is an arbitrary gauge
term. This constraint leaves loop integrals of A as Lagrangian invariants so fluxes are conserved.

As we allow shape variations in the barrier surfaces, in addition to helicity conservation we need to
constrain the pressure variations. Since we are working on the intermediate timescale, short compared
with heating and confinement times, we assume the geometric variations to be both particle-number-
conserving and isentropic. For an ideal (perfect) gas the entropy S is given in terms of the pressure p
and volume V by

S = S0 +
Nk

γ − 1
ln

(
pV γ

p0V
γ
0

)
, (6)
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where S0 and p0V
γ
0 are arbitrary reference values, N is the number of particles and k is Boltzmann’s

constant. Thus constancy of N and S implies the well-known pressure-volume relation

pV γ = p0V
γ
0 exp

[
(γ − 1)

S − S0

Nk

]
= const . (7)

We assume Eq. (7) applies to both the ion and electron gases, so the total pressure p ≡ pi + pe also
obeys pV γ = const, or, equivalently, p1/γV = const. (This constant is sometimes [10, 25] called
“mass,” but Eq. (7) shows it is a nonlinear function of both mass, mN , and entropy, S, and therefore
this terminology is best avoided.) Thus, introducing Lagrange multipliers µi and νi for the helicity and
pressure constraints respectively, our generalized relaxed-MHD equilibrium criterion is that extremizing
the “free energy”

F ≡
∑
i

[
1

2

∫
Pi

(
B2

µ0

− µiA ·B
)
dτ +

(
pi

γ − 1
− νip1/γ

i

)∫
Pi

dτ

]
+

∫
V

B2

2µ0

dτ (8)

with respect to the vector potential A, the pressures pi and the barrier surfaces ri(θ, ζ) gives a static
equilibrium consistent with the existence of magnetic-field-line chaos between the KAM barriers. Be-
cause the constraints are a subset of the ideal-MHD constraints (Fig. 2), such equilibria will also be
Kruskal–Kulsrud ideal-MHD equilibria.

Figure 5. Poincaré plots of magnetic field lines intersecting with a surface of section φ =

const for the two-relaxation-region test case described in the text, the KAM barrier being
shown as a red curve topologically equivalent to the inner and outer boundaries. In the case
on the left, the symmetry breaking deformation parameter d = 0.01, while on the right it
is greater, d = 0.04. In the latter case the islands are clearly fatter and the chaotic regions
around the island separatrices are larger.

The numerical implementation of this program is proceeding towards a practical 3-D equilibrium
code. Figure 5 shows a two-region solution for a test case where the innermost interface is a circular-
cross-section axisymmetric torus: R = R0 + r cos θ, Z = sin θ, with R0 = 1.0 and r = 0.1, while
the outermost boundary is given by R = R0 + r(θ, φ) cos θ. Z = r(θ, φ) sin θ with R0 = 1.0 and r =

0.3+d cos(2θ−φ)+d cos(3θ−φ), where d is an adjustable parameter which introduces nonaxisymmetry
and thus chaotic fields. (In the above we are assuming a cylindrical coordinate system R,Z, φ.) The
(strongly irrational) rotational transforms and appropriate fluxes and pressure jump were prescribed, the
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Beltrami equation Eq. (3) was solved numerically in the two regions as in [24], and the position and
shape of the KAM barrier surface was adjusted iteratively to satisfy the force balance jump condition
[[p + B2/2µ0]] = const across it. (This relation can be derived as an Euler–Lagrange equation from
Eq. (8), [[·]] denoting the jump across the barrier surface.)

A finite element method for solving the Beltrami equation, based on the variational principle, is being
developed. Also the variational nature of the problem suggests the use of gradient-based optimization
methods may be better than the iterative methods so far used, but, as the constraints do not automatically
keep the rotational transforms fixed at the required irrational values [24], care will need be taken to
control the rotational transforms at the boundaries during the minimization.

The plasma will be stable not only to ideal-MHD instabilities but also to tearing and other non-ideal
instabilities if the second variation of F is positive definite with respect to infinitesimal perturbations re-
specting the constraints. The stability problem has been studied in cylindrical geometry as a generalized
eigenvalue problem by defining a Lagrangian L = δ2F − λN , with N a positive definite normalization.
The stability condition is λ ≥ 0 for all eigenvalues. Using a normalization concentrated on the ideal-
MHD barrier interfaces, the perturbed field in plasma regions is computed to be Beltrami (∇×B = µB),
with the same Lagrange multiplier µ as the equilibrium field. The interface equations between the relaxed
regions produce an eigenvalue problem.

In cylindrical geometry with axial periodicity, the displacement is Fourier decomposed, and displace-
ments of the form exp i(mθ + κz) sought, where m is the poloidal mode number, and κ the axial wave
number. Hole et al. [26, 27] have studied the stability of these configurations as a function of mode
number and number of ideal barriers, and benchmarked these results to earlier single interface studies.
Hole et al. also revealed a singular limit problem: the relaxed-MHD stability of a two-interface plasma
differs, in the limit that the two interfaces merge, from that of the corresponding single-interface plasma.

The discrepancy has been resolved by Mills [28], who studied the stability of configurations in which
the inter-barrier region was taken to be an ideal-MHD fluid rather than a relaxed region. In this case,
the ideal stability of resonances in the inter-barrier region was handled explicitly, as opposed to the
Woltjer–Taylor relaxed treatment, in which resonances do not explicitly feature. Plasmas with finite-
width ideal-MHD barriers showed similar stability to the single-interface configuration in the limit as
the barrier width went to zero. Mills concluded it is the different treatment of resonances, which are
implicit in Woltjer–Taylor-relaxed plasmas, but explicit when computing ideal-MHD stability, that is
responsible for reconciling the vanishing-interface-separation paradox. In more recent work, we have
also shown that the tearing mode stability threshold of the plasmas is in agreement with that found
from the variational principle studied here. In ongoing work, we are also studying whether quantization
in the toroidal direction leaves a stable residue of configurations in the parameter space. If so, these
constrained minimum-energy states may be related to internal transport barrier configurations, which are
plasma configurations with good confinement properties that form at sufficiently high heating power.
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4. Other Entropy-Related Approaches

4.1. Maximum Entropy (MaxEnt) Principles in Plasmas and Fluids

By the second law of thermodynamics the entropy of a closed system increases monotonically, asymp-
toting towards a maximum as the system approaches thermal equilibrium. Thus the application of equi-
librium statistical mechanics theory can be viewed as a method for implementing the principle that
systems tend towards a state of Maximum Entropy (MaxEnt). A review by Eyink and Sreenivasan [29]
traces the use of the MaxEnt principle in turbulence theory back to Onsager’s work (some unpublished) in
the 1940s, and cites some of the plasma and atmospheric physics literature where this approach has been
used. [Onsager’s equilibrium statistical mechanics is based on the Hamiltonian nature of inviscid vortex
dynamics and is necessarily nondissipative. However it is very appropriate to the quasi-two-dimensional
turbulence observed in strongly magnetized plasmas and planetary atmospheres (Fig. 1) where there is
an inverse cascade to long wavelengths where viscous dissipation is weak.] Developments of the equi-
librium statistical mechanics approach in the geophysical fluid dynamics context are further discussed in
the article of Frederiksen and O’Kane [30] in this issue.

MaxEnt principles also occur in information theory as the least-informative estimate possible on the
given information. This information-theoretic entropy concept is used in Bayesian data analysis [31]
and image processing, but Jaynes [32] also used it in physics to reinterpret statistical mechanics, with
ramifications that are still being worked out today, including the Maximum Entropy Production (MEP)
Principle discussed below.

The traditional statistical mechanics approaches assume the system to be closed or in contact with
a single heat bath, neither of which is appropriate to a real plasma/geophysical system where there are
always fluxes of energy (and often matter) passing through the system due to heating near the centre of
the plasma/planetary equator and cooling in the edge/polar regions. This problem can be overcome by
the use of Jaynes [32] information-theory-based generalization of statistical mechanics with intensive
variable (or parameter bath) constraints; for thermodynamic systems, this is equivalent to the use of
canonical-like ensembles. This, to date, has been little used in fluid mechanics (and not at all in plasma
physics), though it has been used to infer steady-state velocity distributions in internal turbulent flows,
such as hydraulic channels and pipes [33].

4.2. Maximum Entropy Production (MEP) Principles

In recent years the idea that a nonequilibrium system develops so as to maximize its entropy pro-
duction (the MEP principle) has began to attract increasing attention as a potentially powerful way to
predict how a complex open system will tend to evolve. Interest in the environmental sphere was origi-
nally sparked by the work of Paltridge [34] and the recent revival is partly due to the work of Roderick
(C.) Dewar [35] using a general Jaynesian approach.

Following the recent review of entropy production principles by Martyushev and Seleznev [36] we
distinguish MEP in the nonequilibrium thermodynamics context from MEP in nonequilibrium statistical
mechanics.

In thermodynamics the entropy of the system (or subsystem) S is a state function like the internal
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energy U, and these must satisfy the first and second laws of thermodynamics, δQ = δW + dU and
TdS ≥ δQ, respectively, where T is the temperature, δQ is the net heat (in whatever form) entering the
system (or subsystem) and δW the work done by the system or subsystem on the outside world (or other
subsystems). If the subsystem is a small volume element and local thermal equilibrium is assumed then
equality can be assumed in the second law, but globally entropy increases due to heat flows described by
generalized thermodynamic fluxes and forces.

The authors of [36] base their discussion of nonequilibrium thermodynamics on a principle due to
Ziegler and argue that this is sufficiently general that it covers both the linear Onsager and Prigogine
minimum entropy production principles, and linear and nonlinear maximum entropy production princi-
ples, reconciling them by their different interpretations.

Recently Yoshida and Mahajan [37] have constructed a nonlinear thermodynamic MEP “heat engine”
model of transport barrier formation, in a plasma or fluid system between two heat baths at different
temperature, exhibiting a critical temperature difference beyond which there is useful work δW available
to drive flows (e.g. zonal flows) that reduce turbulent transport.

The authors of [36] also discuss statistical-mechanical formulations of a principle of MEP based on
a principle of the most probable path in n-body phase space they trace back to work by Filyukov and
Karpov in the late ’60s. The modern approaches (e.g. [35]) also incorporate Jaynes’ [32] ideas based on
Bayesian statistics. However, [36] conclude that attempts to derive the MEP principle from microscopic
first principles are so far unsatisfactory, as they require the introduction of additional hypotheses. They
then go on to review the application of the MEP principle in different sciences.

4.3. Minimum Entropy Production Principles

In 1947 Prigogine proved a principle of minimum entropy production and subsequently popularized
his principle and applied it in physics, chemistry and biology [36]. Although its use is limited to close-
to-equilibrium systems, where the thermodynamic forces and fluxes are linearly related, and it has its
detractors on other grounds [38, 39] a version [40] of minimum entropy production has had a small
following in fusion plasma physics with claims of success in modelling some discharges [41]. However,
because of its linearity it is not suited to modelling the emergence of strongly nonlinear phenomena such
as transport barriers.

4.4. Minimax Entropy Production Principles

Struchtrup and Weiss [42, 43] introduce what they call a minimax principle in the context of extended
thermodynamics, in which the global maximum of the local entropy production is minimized. There
may also be transitional cases where entropy production is minimal with respect to some parameters and
maximal with respect to others.

5. Conclusion

The multiregion-relaxation variational approach described in Sec. 3 holds strong promise of being the
most satisfactory mathematical foundation on which to base the solution of the MHD toroidal equilib-
rium problem posed by Grad [44] over forty years ago. The numerical program we are developing will
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not only provide a practical tool for design and analysis of fusion experiments, but will allow numerical
investigation of such fundamental issues as the critical point at which a KAM barrier ceases to be able
sustain a pressure jump. One hopes this will stimulate further mathematical developments beyond KAM
theory (see e.g. [45]) on the existence of KAM barriers and their breakup.

While dissipationless MHD is a standard first-cut model in fusion plasma physics because of its (rel-
ative) mathematical tractability, it is clearly inadequate to describe much of the physics of the complex
self-organizing system that is a hot, toroidally confined plasma. In particular, the lack of diffusive trans-
port in the model allows the unphysically strong (infinite) gradients we have postulated to occur at a
KAM barrier, and also more or less dictates our assumption of complete relaxation between the barriers.
A first step away from this oversimplification has recently been taken by Hudson and Breslau [46], who
used a simple anisotropic thermal diffusion model to resolve the structure of the temperature profile in a
chaotic magnetic field, revealing a much more complex structure than our current relaxation model can
represent. Once dissipation is present a simple energy minimization variational principle is no longer
appropriate, but it may still be possible to construct a variational relaxation model of plasma steady
states by using the thermodynamic MEP principle with a phenomenological Ziegler entropy production
function [36].

The Onsager MaxEnt approach has been partially explored in plasma physics, but its utility in climate
modelling [30] suggests that it should be developed further. The use of Jaynesian MaxEnt approaches
would appear to be an entirely open field in plasma physics, as is the use of statistical-mechanical MEP
principles. Given the need for robust variational principles for predicting the overall behaviour of fusion
we plasmas, we expect entropy-based methods to be of increasing importance in this field.
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