3,990 research outputs found
Intrinsic and structural isotope effects in Fe-based superconductors
The currently available results of the isotope effect on the superconducting
transition temperature T_c in Fe-based high-temperature superconductors (HTS)
are highly controversial. The values of the Fe isotope effect (Fe-IE) exponent
\alpha_Fe for various families of Fe-based HTS were found to be as well
positive, as negative, or even be exceedingly larger than the BCS value
\alpha_BCS=0.5. Here we demonstrate that the Fe isotope substitution causes
small structural modifications which, in turn, affect T_c. Upon correcting the
isotope effect exponent for these structural effects, an almost unique value of
\alpha~0.35-0.4 is observed for at least three different families of Fe-based
HTS.Comment: 4 pages, 2 figure
Onset of dielectric modes at 110K and 60K due to local lattice distortions in non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals
We report the observation of two dielectric transitions at 110K and 60K in
the microwave response of non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals.
The transitions are characterized by a change in polarizability and presence of
loss peaks, associated with overdamped dielectric modes. An explanation is
presented in terms of changes in polarizability of the apical O atoms in the
Ba-O layer, affected by lattice softening at 110K, due to change in buckling of
the Cu-O layer. The onset of another mode at 60K strongly suggests an
additional local lattice change at this temperature. Thus microwave dielectric
measurements are sensitive indicators of lattice softening which may be
relevant to superconductivity.Comment: 5 pages, 3 ps format figure
The polarizability model for ferroelectricity in perovskite oxides
This article reviews the polarizability model and its applications to
ferroelectric perovskite oxides. The motivation for the introduction of the
model is discussed and nonlinear oxygen ion polarizability effects and their
lattice dynamical implementation outlined. While a large part of this work is
dedicated to results obtained within the self-consistent-phonon approximation
(SPA), also nonlinear solutions of the model are handled which are of interest
to the physics of relaxor ferroelectrics, domain wall motions, incommensurate
phase transitions. The main emphasis is to compare the results of the model
with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure
Fluctuating Cu-O-Cu Bond model of high temperature superconductivity in cuprates
Twenty years of extensive research has yet to produce a general consensus on
the origin of high temperature superconductivity (HTS). However, several
generic characteristics of the cuprate superconductors have emerged as the
essential ingredients of and/or constraints on any viable microscopic model of
HTS. Besides a Tc of order 100K, the most prominent on the list include a
d-wave superconducting gap with Fermi liquid nodal excitations, a d-wave
pseudogap with the characteristic temperature scale T*, an anomalous
doping-dependent oxygen isotope shift, nanometer-scale gap inhomogeneity, etc..
The key role of planar oxygen vibrations implied by the isotope shift and other
evidence, in the context of CuO2 plane symmetry and charge constraints from the
strong intra-3d Coulomb repulsion U, enforces an anharmonic mechanism in which
the oxygen vibrational amplitude modulates the strength of the in-plane Cu-Cu
bond. We show, within a Fermi liquid framework, that this mechanism can lead to
strong d-wave pairing and to a natural explanation of the salient features of
HTS
Charge-density-wave instability in the Holstein model with quartic anharmonic phonons
The molecular-crystal model, that describes a one-dimensional electron gas
interacting with quartic anharmonic lattice vibrations, offers great potentials
in the mapping of a relatively wide range of low-dimensional fermion systems
coupled to optical phonons onto quantum liquids with retarded interactions.
Following a non-perturbative approach involving non-Gaussian partial functional
integrations of lattice degrees of freedom, the exact expression of the
phonon-mediated two-electron action for this model is derived. With the help of
Hubbard-Stratonovich transformation the charge-density-wave instability is
examined in the sequel, with particular emphasis on the effect of the quartic
anharmonic phonons on the charge-density-wave transition temperature.Comment: 12 pages, 3 figure
Recommended from our members
Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3
The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities
- …