161 research outputs found

    Cystic fibrohistiocytic tumor of the lung presenting as a solitary lesion

    Get PDF
    Cystic fibrohistiocytic tumor of the lung is a rare neoplasm. In many cases it represents a metastasis from a benign or low-grade fibrohistiocytic tumor of the skin, but occasionally it may be primary. Radiologically it usually occurs as a cystic change of multiple pulmonary nodules, and pneumothorax is the most frequent presenting symptom. We present here a 16-year-old man with recurrent right pneumothorax. The patient had no history of cutaneous fibrohistiocytic lesions. He underwent videothoracoscopic right apical segmentectomy, right lower lobe nodulectomy, and pleuroabrasion. Microscopy of the apical segmentectomy showed a cystic fibrohistiocytic tumor, whereas the nodule of the lower lobe was an intraparenchymal lymph node. The patient is alive with no tumor recurrence. The differential diagnosis includes Langerhans cell histiocytosis, lymphangioleiomyomatosis, pleuropulmonary blastoma, and metastatic endometrial stromal sarcoma. This disease usually occurs with multiple pulmonary cysts and cavitation. This case is the first reported presenting as a single lesion

    Uropathogenic Escherichia coli P and Type 1 Fimbriae Act in Synergy in a Living Host to Facilitate Renal Colonization Leading to Nephron Obstruction

    Get PDF
    The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis

    Lysozyme Resistance in Streptococcus suis Is Highly Variable and Multifactorial

    Get PDF
    Background: Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and investigated the molecular basis of lysozyme resistance for this pathogen. Results: The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml. By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed th

    The Dark Side of the Salad: Salmonella typhimurium Overcomes the Innate Immune Response of Arabidopsis thaliana and Shows an Endopathogenic Lifestyle

    Get PDF
    Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracelullar cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition

    Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein

    Get PDF
    After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer ‘top’ surface of N-MLV CA, including the N-terminal β-hairpin, and map up to 29 Ao apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1n and Fv1b. Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding

    The limits of corporate social responsibility : Techniques of neutralization, stakeholder management and political CSR

    Get PDF
    Since scholarly interest in corporate social responsibility (CSR) has primarily focused on the synergies between social and economic performance, our understanding of how (and the conditions under which) companies use CSR to produce policy outcomes that work against public welfare has remained comparatively underdeveloped. In particular, little is known about how corporate decision-makers privately reconcile the conflicts between public and private interests, even though this is likely to be relevant to understanding the limitations of CSR as a means of aligning business activity with the broader public interest. This study addresses this issue using internal tobacco industry documents to explore British-American Tobacco’s (BAT) thinking on CSR and its effects on the company’s CSR Programme. The article presents a three-stage model of CSR development, based on Sykes and Matza’s theory of techniques of neutralization, which links together: how BAT managers made sense of the company’s declining political authority in the mid-1990s; how they subsequently justified the use of CSR as a tool of stakeholder management aimed at diffusing the political impact of public health advocates by breaking up political constituencies working towards evidence-based tobacco regulation; and how CSR works ideologically to shape stakeholders’ perceptions of the relative merits of competing approaches to tobacco control. Our analysis has three implications for research and practice. First, it underlines the importance of approaching corporate managers’ public comments on CSR critically and situating them in their economic, political and historical contexts. Second, it illustrates the importance of focusing on the political aims and effects of CSR. Third, by showing how CSR practices are used to stymie evidence-based government regulation, the article underlines the importance of highlighting and developing matrices to assess the negative social impacts of CSR

    Wolbachia Bacteria Reside in Host Golgi-Related Vesicles Whose Position Is Regulated by Polarity Proteins

    Get PDF
    Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site
    • …
    corecore