6,519 research outputs found

    Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death

    Get PDF
    Sensing bacterial products in the cytosol of mammalian cells by NOD-like receptors leads to the activation of caspase-1 inflammasomes, and the production of the pro-inflammatory cytokines interleukin (IL)-18 and IL-1β. In addition, mouse caspase-11 (represented in humans by its orthologs, caspase-4 and caspase-5) detects cytosolic bacterial LPS directly. Activation of caspase-1 and caspase-11 initiates pyroptotic host cell death that releases potentially harmful bacteria from the nutrient-rich host cell cytosol into the extracellular environment. Here we use single cell analysis and time-lapse microscopy to identify a subpopulation of host cells, in which growth of cytosolic Salmonella Typhimurium is inhibited independently or prior to the onset of cell death. The enzymatic activities of caspase-1 and caspase-11 are required for growth inhibition in different cell types. Our results reveal that these proteases have important functions beyond the direct induction of pyroptosis and proinflammatory cytokine secretion in the control of growth and elimination of cytosolic bacteria

    A characteristic particle method for traffic flow simulations on highway networks

    Full text link
    A characteristic particle method for the simulation of first order macroscopic traffic models on road networks is presented. The approach is based on the method "particleclaw", which solves scalar one dimensional hyperbolic conservations laws exactly, except for a small error right around shocks. The method is generalized to nonlinear network flows, where particle approximations on the edges are suitably coupled together at the network nodes. It is demonstrated in numerical examples that the resulting particle method can approximate traffic jams accurately, while only devoting a few degrees of freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth International Workshop Meshfree Methods for PDE 201

    The Evolution of the Field and Cluster Morphology-Density Relation for Mass-Selected Samples of Galaxies

    Get PDF
    The Sloan Digital Sky Survey (SDSS) and photometric/spectroscopic surveys in the GOODS-South field (the Chandra Deep Field-South, CDFS) are used to construct volume-limited, stellar mass-selected samples of galaxies at redshifts 0<z<1. The CDFS sample at 0.6<z<1.0 contains 207 galaxies complete down to M=4x10^10 Msol (for a ``diet'' Salpeter IMF), corresponding to a luminosity limit for red galaxies of M_B=-20.1. The SDSS sample at 0.020<z<0.045 contains 2003 galaxies down to the same mass limit, which corresponds to M_B=-19.3 for red galaxies. Morphologies are determined with an automated method, using the Sersic parameter n and a measure of the residual from the model fits, called ``bumpiness'', to distinguish different morphologies. These classifications are verified with visual classifications. In agreement with previous studies, 65-70% of the galaxies are located on the red sequence, both at z~0.03 and at z~0.8. Similarly, 65-70% of the galaxies have n>2.5. The fraction of E+S0 galaxies is 43+/-3%$ at z~0.03 and 48+/-7% at z~0.8, i.e., it has not changed significantly since z~0.8. When combined with recent results for cluster galaxies in the same redshift range, we find that the morphology-density relation for galaxies more massive than 0.5M* has remained constant since at least z~0.8. This implies that galaxies evolve in mass, morphology and density such that the morphology-density relation does not change. In particular, the decline of star formation activity and the accompanying increase in the stellar mass density of red galaxies since z~1 must happen without large changes in the early-type galaxy fraction in a given environment.Comment: 16 pages, 13 figures, 2 tables. Updated to match journal version. Will appear in ApJ (vol. 670, p. 206

    Genetic diversity at the FMR1 locus in the Indonesian population

    Get PDF
    We report an analysis of allelic diversity at short tandem repeat polymorphisms within the fragile XA locus in 1069 male volunteers from twelve Indonesian sub-populations. An odd numbered allele of DXS548 was found at high frequency in all Indonesian populations. Greater allelic diversity was identified at the loci under study than has been previously reported for an Asian population. These differences distinguish the Indonesian population from all previously reported Asian, European and African populations. A high frequency of small premutation alleles, 4/120 (3.3%, 95% CI 0.9–8.3%), was identified in the Moluccan population of Hiri Island

    A rarefaction-tracking method for hyperbolic conservation laws

    Full text link
    We present a numerical method for scalar conservation laws in one space dimension. The solution is approximated by local similarity solutions. While many commonly used approaches are based on shocks, the presented method uses rarefaction and compression waves. The solution is represented by particles that carry function values and move according to the method of characteristics. Between two neighboring particles, an interpolation is defined by an analytical similarity solution of the conservation law. An interaction of particles represents a collision of characteristics. The resulting shock is resolved by merging particles so that the total area under the function is conserved. The method is variation diminishing, nevertheless, it has no numerical dissipation away from shocks. Although shocks are not explicitly tracked, they can be located accurately. We present numerical examples, and outline specific applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding

    The rate of convergence of Euler approximations for solutions of stochastic differential equations driven by fractional Brownian motion

    Full text link
    The paper focuses on discrete-type approximations of solutions to non-homogeneous stochastic differential equations (SDEs) involving fractional Brownian motion (fBm). We prove that the rate of convergence for Euler approximations of solutions of pathwise SDEs driven by fBm with Hurst index H>1/2H>1/2 can be estimated by O(δ2H−1)O(\delta^{2H-1}) (δ\delta is the diameter of partition). For discrete-time approximations of Skorohod-type quasilinear equation driven by fBm we prove that the rate of convergence is O(δH)O(\delta^H).Comment: 21 pages, (incorrect) weak convergence result removed, to appear in Stochastic

    On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa-Holm system

    Full text link
    The Camassa-Holm equation and its two-component Camassa-Holm system generalization both experience wave breaking in finite time. To analyze this, and to obtain solutions past wave breaking, it is common to reformulate the original equation given in Eulerian coordinates, into a system of ordinary differential equations in Lagrangian coordinates. It is of considerable interest to study the stability of solutions and how this is manifested in Eulerian and Lagrangian variables. We identify criteria of convergence, such that convergence in Eulerian coordinates is equivalent to convergence in Lagrangian coordinates. In addition, we show how one can approximate global conservative solutions of the scalar Camassa-Holm equation by smooth solutions of the two-component Camassa-Holm system that do not experience wave breaking
    • …
    corecore