107 research outputs found
On The Integral Coding Advantage In Unit Combination Networks
Network coding is a networking paradigm which allows network nodes to combine different pieces of data at various steps in the transmission rather than simply copying and forwarding the data. Network coding has various applications, and can be used to increase throughput, routing efficiency, robustness, and security. The original benefit that was demonstrated was improving the allowable transmission rate for a multicast session, and this application has been the focus of much research. One important parameter, the coding advantage, is the ratio of throughput with network coding to that without. The multicast networks that have a non-trivial coding advantage (i.e., coding advantage greater than 1) all seem to contain a substructure called the combination network which has a source, n relay nodes, and n k receivers in which each receiver is adjacent to a unique subset of k relay nodes. The coding advantage in combination networks has previously been determined for networks with fractional routing. In this paper, we address integral routing, which is more appropriate for networks (like optical wavelength-division-multiplexing networks) which allow only coarse-grained subdivision of the available bandwidth on
any given channel. We give exact formulas for the integral coding advantage in both directed and undirected networks. For directed networks, we show that the coding advantage is k=n nk+1. For undirected networks, we show that the coding advantage is k=(k1). The latter result ts with conjectures that the integral coding advantage in any undirected network
is bounded above by 2
XMM-Newton and Optical Observations of Cataclysmic Variables from SDSS
We report on XMM-Newton and optical results for 6 cataclysmic variables that
were selected from Sloan Digital Sky Survey spectra because they showed strong
HeII emission lines, indicative of being candidates for containing white dwarfs
with strong magnetic fields. While high X-ray background rates prevented
optimum results, we are able to confirm SDSSJ233325.92+152222.1 as an
intermediate polar from its strong pulse signature at 21 min and its obscured
hard X-ray spectrum. Ground-based circular polarization and photometric
observations were also able to confirm SDSSJ142256.31-022108.1 as a polar with
a period near 4 hr. Photometry of SDSSJ083751.00+383012.5 and
SDSSJ093214.82+495054.7 solidifies the orbital period of the former as 3.18 hrs
and confirms the latter as a high inclination system with deep eclipses.Comment: 31 pages, 14 figures. Accepted for publication in the Astronomical
Journa
AHTR Refueling Systems and Process Description
The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel
AHTR Mechanical, Structural, and Neutronic Preconceptual Design
This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic base isolation, and 4) decay heat powered back-up electricity generation. The report provides a preconceptual design of the manipulators, the fuel transfer system, and the salt transfer loops. The mechanical handling of the fuel and how it is accomplished without instrumentation inside the salt is described within the report. All drives for the manipulators reside outside the reactor top flange. The design has also taken into account the transportability of major components and how they will be assembled on sit
Recommended from our members
Subwavelength Structured Narrow-Band Integrated Optical Grating Filters
A unique type of narrow band integrated optical filter is investigated based on embedding a subwavelength resonant grating structure within a planar waveguide. Current integrated narrow-band optical filters are limited by their size, density of devices that can be produced, overall performance, and ability to be actively altered for tuning and modulation purposes. In contrast, the integrated optical filters described in this work can have extremely narrow bandwidths--on the order of a few angstroms. Also, their compact size enables multiple filters to be integrated in a single high density device for signal routing or wavelength discrimination. Manipulating any of the resonant structure`s parameters will tune the output response of the filter, which can be used for modulation or switching applications
Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES
Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create
quasiperiodic signals in their photometric and Doppler spectroscopic
measurements. The periodic Doppler signals can mimic radial velocity (RV)
changes expected from orbiting exoplanets. Exoplanets can be distinguished from
activity-induced false positives by the chromaticity and long-term incoherence
of starspot signals, but these qualities are poorly constrained for
fully-convective M stars. Coherent photometric starspot signals on M dwarfs may
persist for hundreds of rotations, and the wavelength dependence of starspot RV
signals may not be consistent between stars due to differences in their
magnetic fields and active regions. We obtained precise multi-wavelength RVs of
four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the
near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES
spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the
Las Cumbres Observatory (LCO) network of telescopes. We found that all four
stars exhibit large spot-induced Doppler signals at their rotation periods, and
investigated the longevity and optical-to-NIR chromaticity for these signals.
The phase curves remain coherent much longer than is typical for Sunlike stars.
Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV
modulation consistent in both phase and amplitude. In general, though, we find
that the NIR amplitudes are lower than their optical counterparts. We conclude
that starspot modulation for rapidly-rotating M stars frequently remains
coherent for hundreds of stellar rotations, and gives rise to Doppler signals
that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa
Systematically Variable Planktonic Carbon Metabolism Along a Land-To-Lake Gradient in a Great Lakes Coastal Zone
During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles
Association of Trauma Molecular Endotypes With Differential Response to Transfusion Resuscitation Strategies
IMPORTANCE: It is not clear which severely injured patients with hemorrhagic shock may benefit most from a 1:1:1 vs 1:1:2 (plasma:platelets:red blood cells) resuscitation strategy. Identification of trauma molecular endotypes may reveal subgroups of patients with differential treatment response to various resuscitation strategies.
OBJECTIVE: To derive trauma endotypes (TEs) from molecular data and determine whether these endotypes are associated with mortality and differential treatment response to 1:1:1 vs 1:1:2 resuscitation strategies.
DESIGN, SETTING, AND PARTICIPANTS: This was a secondary analysis of the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) randomized clinical trial. The study cohort included individuals with severe injury from 12 North American trauma centers. The cohort was taken from the participants in the PROPPR trial who had complete plasma biomarker data available. Study data were analyzed on August 2, 2021, to October 25, 2022.
EXPOSURES: TEs identified by K-means clustering of plasma biomarkers collected at hospital arrival.
MAIN OUTCOMES AND MEASURES: An association between TEs and 30-day mortality was tested using multivariable relative risk (RR) regression adjusting for age, sex, trauma center, mechanism of injury, and injury severity score (ISS). Differential treatment response to transfusion strategy was assessed using an RR regression model for 30-day mortality by incorporating an interaction term for the product of endotype and treatment group adjusting for age, sex, trauma center, mechanism of injury, and ISS.
RESULTS: A total of 478 participants (median [IQR] age, 34.5 [25-51] years; 384 male [80%]) of the 680 participants in the PROPPR trial were included in this study analysis. A 2-class model that had optimal performance in K-means clustering was found. TE-1 (n = 270) was characterized by higher plasma concentrations of inflammatory biomarkers (eg, interleukin 8 and tumor necrosis factor α) and significantly higher 30-day mortality compared with TE-2 (n = 208). There was a significant interaction between treatment arm and TE for 30-day mortality. Mortality in TE-1 was 28.6% with 1:1:2 treatment vs 32.6% with 1:1:1 treatment, whereas mortality in TE-2 was 24.5% with 1:1:2 treatment vs 7.3% with 1:1:1 treatment (P for interaction = .001).
CONCLUSIONS AND RELEVANCE: Results of this secondary analysis suggest that endotypes derived from plasma biomarkers in trauma patients at hospital arrival were associated with a differential response to 1:1:1 vs 1:1:2 resuscitation strategies in trauma patients with severe injury. These findings support the concept of molecular heterogeneity in critically ill trauma populations and have implications for tailoring therapy for patients at high risk for adverse outcomes
Chronicles of hypoxia: Time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake – A Great Lakes estuary
We chronicled the seasonally recurring hypolimnetic hypoxia in Muskegon Lake – a Great Lakes estuary over 3 years, and examined its causes and consequences. Muskegon Lake is a mesotrophic drowned river mouth that drains Michigan\u27s 2nd largest watershed into Lake Michigan. A buoy observatory tracked ecosystem changes in the Muskegon Lake Area of Concern (AOC), gathering vital time-series data on the lake\u27s water quality from early summer through late fall from 2011 to 2013 (www.gvsu.edu/buoy). Observatory-based measurements of dissolved oxygen (DO) tracked the gradual development, intensification and breakdown of hypoxia (mild hypoxia b4 mg DO/L, and severe hypoxia b2 mg DO/L) below the ~6 m thermocline in the lake, occurring in synchrony with changes in temperature and phytoplankton biomass in the water column during July–October. Time-series data suggest that proximal causes of the observed seasonal hypolimnetic DO dynamics are stratified summer water-column, reduced wind-driven mixing, longer summer residence time, episodic intrusions of cold DO-rich nearshore Lake Michigan water, nutrient run off from watershed, and phytoplankton blooms. Additional basin-wide water-column profiling (2011–2012) and ship-based seasonal surveys (2003–2013) confirmed that bottom water hypoxia is an annually recurring lake-wide condition. Volumetric hypolimnetic oxygen demand was high (0.07–0.15 mg DO/Liter/day) and comparable to other temperate eutrophic lakes. Over 3 years of intense monitoring, ~9–24% of Muskegon Lake\u27s volume experienced hypoxia for ~29–85 days/year – with the potential for hypolimnetic habitat degradation and sediment phosphorus release leading to further eutrophication. Thus, time-series observatories can provide penetrating insights into the inner workings of ecosystems and their external drivers
- …