13 research outputs found

    Prediction and diagnosis of bladder cancer recurrence based on urinary content of <it>hTERT</it>, <it>SENP1</it>, <it>PPP1CA</it>, and <it>MCM5 </it>transcripts

    No full text
    Abstract Background Identification of urinary biomarkers for detection of bladder cancer recurrence would be beneficial to minimize the frequency of cystoscopy. Our objective was to determine the usability of urine content of mRNA in the detection and prediction of bladder cancer recurrence. Methods We analyzed 123 prospectively cross-sectional collected urine samples from 117 patients with bladder cancer (12 incident cancers and 111 control visits). We used biopsies from cystoscopies as diagnostic criteria for recurrence, and followed the patients for a median time of 28.5 months (range 0-44 months). We measured the levels of hTERT, SENP1, PPP1CA, and MCM5 mRNA in urine by q-RT- PCR. Results We found significant differences in urinary content of hTERT (p SENP1 (p MCM5 (p PPP1CA (p hTERT: 63/73, SENP1: 56/78, MCM5: 63/66, and PPP1CA: 69/63, respectively. Including follow-up data resulted in sensitivity and specificity values for hTERT: 62/84, SENP1:53/84, MCM5: 61/73, and PPP1CA: 65/66. Interestingly, at non-tumor visits the urinary content of especially hTERT (p = 0.0001) and MCM5 (p = 0.02) were significantly associated with subsequent tumour recurrence. Combining the markers with cytology improved the detection. The best combination was hTERT and cytology with a sensitivity of 71% and a specificity of 86% after follow-up. Further prospective validation or registration studies needs to be carried out before clinical use. Conclusions We could use the urinary content of hTERT, SENP1, PPP1CA, and MCM5 to detect bladder cancer recurrence. All markers showed a higher sensitivity than cytology. The detection rate improved when including cytology results, but also the combination of hTERT and MCM5 increased the detection rate. Furthermore, hTERT and MCM5 levels predicted subsequent tumor recurrences.</p

    Minimum information for reporting next generation sequence genotyping (MIRING): Guidelines for reporting HLA and KIR genotyping via next generation sequencing

    Get PDF
    AbstractThe development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org
    corecore