15 research outputs found

    Higiénikus élelmiszerüzem tervezése

    Get PDF

    The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    Get PDF
    peer-reviewedIn combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products

    Règles de conception hygiénique

    No full text
    International audienc

    Bioluminescent Listeria monocytogenes provide a rapid assay for measuring biocide efficacy

    No full text
    A recombinant derivative of Listeria monocytogenes 23074, engineered to express the luxAB genes of Vibrio fischeri MJ1, has a bioluminescent phenotype that provides a rapid monitor of microbial viability. The antibacterial activity of phenol and chlorhexidine diacetate (Hibitane) was measured using both bioluminescence and viable counts. Concentration exponents were assessed as 7.3 for phenol and 2.63 for chlorhexidine diacetate using plate counts. The rapidity of bioluminescence measurement constitutes a major advantage in biocide assessment

    Complex responses of microorganisms as a community to a flowing atmospheric plasma

    No full text
    It is well known that microorganisms are highly adaptable to changing microenvironments and to a diversity of external stresses. To investigate this, a vacuum filtration technique was used to deposit Listeria innocua cells in a single monolayer onto a membrane and a pulsed radio-frequency atmospheric plasma plume was used to treat such samples. Unexpectedly however, the resulting inactivation kinetics were biphasic despite the initial homogeneity. This paper reveals complex cascading events in the microbial community, starting with the emergence of discrete isles of cell aggregates, through their evolution into what we refer to as “cell refuges” that protect viable cells from subsequent plasma treatment and finally, the disintegration of the cell refuges leaving only a thin layer of fragmented cell debris. It is shown that plasma-mediated cell aggregates and cell refuges introduce heterogeneity and are key to explaining the biphasic inactivation kinetics. The evolving surface architecture of the bacterial community could lead to the regulation of plasma species that the bacteria come to be exposed to. All of these factors could strongly affect the role played by charged plasma species involved in plasma–cell interactions. The complex and dynamically evolving responses of the bacteria to the gaseous plasma do not conform to the spatial distribution of the plasma, thus representing a process of self-organization. Plasma-mediated self-organization of cell refuges and their selective screening of plasma species are perhaps only early signs of the undoubtedly sophisticated ability of microorganisms as a community to respond to the action of plasmas

    The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    No full text
    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products

    The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    No full text
    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products
    corecore