8 research outputs found

    Long-term cortisol levels in hair of children and adolescents with Prader-Willi Syndrome

    Get PDF
    Context: Prader-Willi syndrome (PWS) is characterized by hypothalamic dysfunction. In children with PWS, stress-induced central adrenal insufficiency (CAI) has been described, however, daily life cortisol production may be normal. Hair cortisol concentration (HCC) is a marker of long-term systemic cortisol production. Cortisol awakening response (CAR) is the increase in cortisol level after awakening. A negative CAR might suggest hypothalamic-pituitary-adrenal (HPA)-axis reactivity problems. Little is known about HCC and CAR in children with PWS. Objective: To investigate long-term cortisol levels in hair and CAR in children with PWS. Design: Cross-sectional study. Patients: 41 children with PWS. Setting: Dutch PWS Reference Center. Main outcome measures: HCC and salivary cortisol measured by LCMS. Results: Median (IQR) HCC was 1.90 (1.02–3.30) pg/mg at a median (IQR) age of 14.5 (8.20–19.0) years, with median HCC in age-matched references being 2.63 pg/mg. Five patients (13.2%) had HCC &lt; 2.5th percentile for age and these patients had a repeatedly negative CAR. Median HCC was significantly lower in patients with negative CAR than in patients with normal CAR (1.00 (0.22–1.59) vs. 2.25 (1.47–3.26) pg/mg, p = 0.007). One patient had both HCC &lt; 2.5th percentile and repeatedly low morning salivary cortisol levels and negative CAR, and was diagnosed with adrenal insufficiency by overnight metyrapone test. Conclusions: HCC were normal in the majority of children with PWS. Our data suggest that children with HCC &lt; 2.5th percentile and (repeatedly) negative CAR might possibly have adrenal insufficiency or delayed HPA-axis responsiveness.</p

    Anti-Müllerian hormone levels in girls and adolescents with Turner syndrome are related to karyotype, pubertal development and growth hormone treatment

    Get PDF
    STUDY QUESTION In girls and adolescents with Turner syndrome (TS), is there a correlation between serum AMH levels and karyotype, spontaneous puberty and other biochemical markers of ovarian function, or growth hormone (GH) therapy? SUMMARY ANSWER Serum anti-Müllerian hormone (AMH) correlates with karyotype, pubertal development, LH, FSH and are measurable in a higher percentage of TS patients under GH therapy. WHAT IS KNOWN ALREADY Most girls with TS suffer from incomplete sexual development, premature ovarian failure and infertility due to abnormal ovarian folliculogenesis. Serum AMH levels reflect the ovarian reserve in females, even in childhood. STUDY DESIGN, SIZE, DURATION Cross-sectional study investigating 270 karyotype proven TS patients aged 0-20 years between 2009 and 2010. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Studies were conducted at three University Children's hospitals in Europe. Main outcome measures were clinical data concerning pubertal development as well as laboratory data including karyotype, serum AMH, LH, FSH, estradiol (E2), inhibin B and IGF. RESULTS AND THE ROLE OF CHANCE Serum AMH was detectable in 21.9% of all TS girls and correlated strongly with karyotypes. A measurable serum AMH was found in 77% of TS girls with karyotype 45,X/46,XX, in 25% with ‘other' karyotypes and in only 10% of 45,X TS girls. A strong relationship was also observed for measurable serum AMH and signs of spontaneous puberty such as breast development [adjusted odds ratio (OR) 19.3; 95% CI 2.1-175.6; P = 0.009] and menarche (crude OR 47.6; 95% CI 4.8-472.9; P = 0.001). Serum AMH correlated negatively with FSH and LH, but did not correlate with E2 and inhibin B. GH therapy increased the odds of having measurable AMH in TS (adjusted OR 4.1; 95% CI 1.9-8.8; P < 0.001). LIMITATIONS, REASONS FOR CAUTION The cross-sectional design of the study does not allow longitudinal interpretation of the data; for that further studies are needed. High percentage of non-measurable AMH levels in the cohort of TS require categorized analysis. WIDER IMPLICATIONS OF THE FINDINGS Serum AMH levels are a useful marker of the follicle pool and thus ovarian function in pediatric patients with TS. These findings are in line with the published literature. The finding that GH therapy may affect AMH levels is novel, but must be confirmed by future longitudinal studie

    Appetite-and weight-inducing and-inhibiting neuroendocrine factors in prader–willi syndrome, bardet–biedl syndrome and craniopharyngioma versus anorexia nervosa

    Get PDF
    Obesity is reaching an epidemic state and has a major impact on health and economy. In most cases, obesity is caused by lifestyle factors. However, the risk of becoming obese differs highly between people. Individual's differences in lifestyle, genetic, and neuroendocrine factors play a role in satiety, hunger and regulation of body weight. In a small percentage of children and adults with obesity, an underlying hormonal or genetic cause can be found. The aim of this review is to present and compare data on the extreme ends of the obesity and undernutrition spectrum in patients with Prader–Willi syndrome (PWS), Bardet–Biedl syndrome (BBS), acquired hypothalamic obesity in craniopharyngioma patients, and anorexia nervosa. This may give more insight into the role of neuroendocrine factors and might give direction for future research in conditions of severe obesity and underweight

    Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin

    Get PDF
    Context: Prader-Willi syndrome (PWS) is characterized by hypothalamic dysfunction, hyperphagia and a typical behavioural phenotype, with characteristics of autism spectrum disorder (ASD) like stubbornness, temper tantrums and compulsivity. It has been suggested that the oxytocin system in patients with PWS is dysfunctional. In ASD, intranasal oxytocin treatment has favourable effects on behaviour. Objective: To evaluate the effects of 3 months of twice daily intranasal oxytocin (dose range 16-40 IU/day), compared to placebo, on behaviour and hyperphagia in children with PWS. Design: Randomized, double-blind, placebo-controlled, crossover study in the Dutch PWS Reference Center. Patients: Twenty-six children with PWS aged 3-11 years. Main outcome measures: (Change in) behaviour and hyperphagia measured by Oxytocin Questionnaire and Dykens hyperphagia questionnaire. Results: In the total group, no significant effects of oxytocin on social behaviour or hyperphagia were found. However, in boys, the Oxytocin Questionnaire scores improved significantly during oxytocin treatment, compared to a deterioration during placebo (4.5 (−0.8 to 15.3) vs. −4.0 (−11.3 to 0.8), P =.025). The Dykens hyperphagia questionnaire scores remained similar during oxytocin treatment, while there was a deterioration during placebo (0.0 (−0.8 to 4.3) vs. −3.5 (−6.0 to 0.0), P =.046). Patients with a deletion had significant improvements in both questionnaire scores during oxytocin treatment, but deteriorations during placebo. Oxytocin treatment was well tolerated, and there were no serious adverse events. Conclusions: Intranasal oxytocin treatment has positive effects on social and eating behaviour in 3-11 years aged boys with PWS and in children with a deletion without safety concerns. Intranasal oxytocin in children with PWS might be considered, but individual effects should be carefully evaluated and treatment discontinued if no effects are found

    Congenital hypopituitarism in two brothers with a duplication of the ‘acrogigantism gene’ GPR101: clinical findings and review of the literature

    Get PDF
    Purpose: Congenital hypopituitarism (CH) can cause significant morbidity or even mortality. In the majority of patients, the etiology of CH is unknown. Understanding the etiology of CH is important for anticipation of clinical problems and for genetic counselling. Our previous studies showed that only a small proportion of cases have mutations in the known ‘CH genes’. In the current project, we present the results of SNP array based copy number variant analysis in a family with unexplained congenital hypopituitarism. Methods: DNA samples of two affected brothers with idiopathic CH and their mother were simultaneously analyzed by SNP arrays for copy number variant analysis and Whole Exome Sequencing (WES) for mutation screening. DNA of the father was not available. Results: We found a 6 Mb duplication including GPR101 and SOX3 on the X-chromosome (Xq26.2-q27.1) in the two siblings and their mother, leading to 2 copies of this region in the affected boys and 3 copies in the mother. Duplications of GPR101 are associated with X-linked acrogigantism (the phenotypic ‘opposite’ of the affected brothers), whereas alterations in SOX3 are associated with X-linked hypopituitarism. Conclusion: In our patients with hypopituitarism we found a 6 Mb duplication which includes GPR101, a gene associated with X- linked gigantism, and SOX3, a gene involved in early pituitary organogenesis that is associated with variable degrees of hypopituitarism. Our findings show that in duplications containing both GPR101 and SOX3, the growth hormone deficiency phenotype is dominant. This suggests that, if GPR101 is duplicated, it might not be expressed phenotypically when early patterning of the embryonic pituitary is affected due to SOX3 duplication. These results, together with the review of the literature, shed a new light on the role of GPR101 and SOX3 in pituitary function

    The Effects of 5 Years of Growth Hormone Treatment on Growth and Body Composition in Patients with Temple Syndrome

    No full text
    INTRODUCTION: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal uniparental disomy of chromosome 14, paternal deletion of 14q32.2, or an isolated methylation defect. Most patients with TS14 develop precocious puberty. Some patients with TS14 are treated with growth hormone (GH). However, evidence for the effectiveness of GH treatment in patients with TS14 is limited. METHODS: This study describes the effect of GH treatment in 13 children and provides a subgroup analysis of 5 prepubertal children with TS14. We studied height, weight, body composition by dual-energy X-ray absorptiometry, resting energy expenditure (REE), and laboratory parameters during 5 years of GH treatment. RESULTS:In the entire group, mean (95% CI) height SDS increased significantly during 5 years of GH treatment from -1.78 (-2.52; -1.04) to 0.11 (-0.66; 0.87). Fat mass percentage SDS decreased significantly during the first year of GH, and lean body mass (LBM) SDS and LBM index increased significantly during 5 years of treatment. IGF-1 and IGF-BP3 levels rose rapidly during GH treatment, and the IGF-1/IGF-BP3 molar ratio remained relatively low. Thyroid hormone levels, fasting serum glucose, and insulin levels remained normal. In the prepubertal group, median (interquartile range [IQR]) height SDS, LBM SDS, and LBM index also increased. REE was normal at start and did not change during 1 year of treatment. Five patients reached adult height and their median (IQR) height SDS was 0.67 (-1.83; -0.01). CONCLUSION: GH treatment in patients with TS14 normalizes height SDS and improves body composition. There were no adverse effects or safety concerns during GH treatment.</p

    Effects of childhood multidisciplinary care and growth hormone treatment on health problems in adults with prader-willi syndrome

    Get PDF
    Prader-Willi syndrome (PWS) is a complex hypothalamic disorder. Features of PWS include hyperphagia, hypotonia, intellectual disability, and pituitary hormone deficiencies. The combination of growth hormone treatment and multidisciplinary care (GHMDc) has greatly improved the health of children with PWS. Little is known about the effects of childhood GHMDc on health outcomes in adulthood. We retrospectively collected clinical data of 109 adults with PWS. Thirty-nine had received GHMDc during childhood and adolescence (GHMDc+ group) and sixty-three had never received growth hormone treatment (GHt) nor multidisciplinary care (GHMDc− group). Our systematic screening revealed fewer undetected health problems in the GHMDc+ group (10%) than in the GHMDc− group (84%). All health problems revealed in the GHMDc+ group had developed between the last visit to the paediatric and the first visit to the adult clinic and/or did not require treatment. Mean BMI and the prevalence of diabetes mellitus type 2 were significantly lower in the GHMDc+ group compared to the GHMDc− group. As all patients who received GHt were treated in a multidisciplinary setting, it is unknown which effects are the result of GHt and which are the result of multidisciplinary care. However, our data clearly show that the combination of both has beneficial effects. Therefore, we recommend continuing GHMDc after patients with PWS have reached adult age
    corecore