11 research outputs found

    Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci

    Get PDF
    Abstract Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis

    Influence of surface treatment on corrosion resistance of steel in liquid Pb

    No full text
    This work deals with behaviour of steel in liquid lead environment and possibilities of corrosion resistance improvement. Liquid metal cooled systems are under wide investigation and development and represent a good alternative. It is necessary to find materials, which would be affected by liquid lead minimally. Austenitic steel 316L without coating and coated with TiSiC was studied in flowing liquid lead. Conditions of the experiment simulated real environment of the system. Deposition of protective barrier reduced the metals dissolution and diffusion of liquid lead into the steel substrate, degradation of substrate due to high temperature and mechanical stress. Presence of Si in the layer increased the surface ability to form stabile oxide and contribute to steel´s protection

    Effect of surface machining on the environmentally-assisted cracking of Alloy 182 and 316L stainless steel in light water reactor environments – results of the collaborative project MEACTOS

    Get PDF
    The main objective of the EU-funded project mitigating environmentally-assisted cracking through optimisation of surface condition (MEACTOS) was to gain knowledge on the ability of different surface machining procedures to mitigate environmentally-assisted cracking (EAC) in typical light water reactor structural materials and environments. Surfaces of cold-worked (CW) type 316L austenitic stainless steel and nickel-based weld metal Alloy 182 flat tapered tensile specimens were machined using different processes. EAC initiation susceptibility of these specimens was evaluated using constant extension rate tensile (CERT) tests under simulated boiling water reactor (BWR) and pressurized water reactor (PWR) conditions and assessed using constant load experiments. More than a hundred tests were performed covering about 10 years of autoclave testing time. Only minor or no measurable improvements in EAC initiation susceptibility as a function of surface treatments (grinding or advanced machining) compared to the standard industrial face milling were demonstrated. In most cases, the stress thresholds for EAC initiation determined in constant load tests confirmed the trend obtained from CERT tests. This paper summarises the most important results and conclusions concerning the EAC initiation behaviour for the CW 316L and Alloy 182 under reducing PWR and oxidizing BWR conditions
    corecore