42 research outputs found

    Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics : results of a double-blinded randomized cross-over clinical pilot study

    Get PDF
    Background: Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. Methods: We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m3; 6.1 ± 0.4 × 105 particles/cm3 for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). (Trial registration: NCT00527462) Results: For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. Conclusions: Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Assessment of the power required for optimal use of current inhalation devices

    No full text
    Background: Inhalation of medications is the cornerstone in the treatment of patients with lung diseases. A variety of inhalation devices exists and each device has specific requirements to achieve optimum inhalation of the drug. The goal of this study was to establish a clear overview on performance requirements of standard inhalation devices that should be met by the patient’s breathing power and to develop a new method to measure the individual performance data. Materials and Methods: An optimum and still acceptable required breathing power (P in watts) was calculated for each device with the aid of individual device flow rates (determined by a literature search) and the flow resistances (by measuring the pressure drop over the different inhalation devices). For the in vivo part of the study, peak inspiratory flow and peak inspiratory pressure drop were measured in 21 adult patients with asthma or chronic obstructive pulmonary disease and healthy volunteers and the peak inspiratory power (PIPO in watts) was calculated. Results: Nearly no power is needed to achieve optimum results when using pressurized metered dose inhalers. For dry powder inhalers, the required power depends on the specific inhalation device. Conclusions: Inhalation devices impose differing demands on the inspiratory breathing power of patients. To ensure adequate use of the different devices, a cheap and simple assessment of patients’ PIPO may be one option

    Facial thermography is a sensitive tool to determine antihistaminic activity: comparison of levocetirizine and fexofenadine

    No full text
    Aims To assess the antihistaminic activity of levocetirizine and fexofenadine 2 h and 24 h after drug administration using facial thermography and to compare the results with those using well-established parameters of antihistaminic activity in the nose and skin. Methods This was a randomized, double-blind, three-treatment, three-period, single-dose, cross-over study in healthy males taking levocetirizine 5 mg, fexofenadine 120 mg or placebo. The primary endpoint was nasal skin temperature after nasal histamine challenge recorded for 20 min at 2 and 24 h after drug intake. The secondary endpoints were nasal symptoms and a histamine skin prick test. Results Thirty subjects were randomized. At 2 h after drug intake the inhibition of the nasal temperature increase from baseline was not significantly different between levocetirizine and fexofenadine. At 24 h it was significantly more pronounced after levocetirizine than fexofenadine (difference: least-squares mean: -0.13 °C; P ? 0.024, 95% CI -0.24, -0.02). Both drugs significantly reduced (P ? 0.001) the mean temperature increase from baseline compared with placebo at 2 and 24 h (least-squares mean increase and (95% CI): levocetirizine, -0.28 °C (-0.42, -0.14) and -0.32 °C (-0.43, -0.21); fexofenadine -0.35 °C (-0.49, -0.21) and -0.19 °C (-0.30, -0.08), respectively). Results of nasal symptom score and wheal and flare were consistent with the thermography results. Conclusions Facial thermography is an objective, non-invasive and sensitive method to study antihistaminic activity at the nose level. Levocetirizine and fexofenadine demonstrate the same activity at 2 h after drug intake, but levocetirizine has a more sustained activity at 24 h

    Tiotropium Respimat® versus HandiHaler®: Comparison of Bronchodilator Efficacy of Various Doses in Clinical Trials

    No full text
    <p><b>Article full text</b></p> <p><br></p> <p>The full text of this article can be found <a href="http://link.springer.com/article/10.1007/s12325-016-0322-9"><b>here</b>.</a> </p> <p><br></p> <p><b>Provide enhanced content for this article</b></p> <p><br></p> <p>If you are an author of this publication and would like to provide additional enhanced content for your article then please contact <a href="http://www.medengine.com/Redeem/”mailto:[email protected]”"><b>[email protected]</b></a>.</p> <p> </p> <p>The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.</p> <p><br></p> <p>Other enhanced features include, but are not limited to:</p> <p><br></p> <p>• Slide decks</p> <p>• Videos and animations</p> <p>• Audio abstracts</p> <p>• Audio slides</p

    Segmental Allergen Challenge Alters Multimeric Structure and Function of Surfactant Protein D in Humans

    No full text
    Rationale: Surfactant protein D (SP-D), a 43-kD collectin, is synthesized and secreted by airway epithelia as a dodecamer formed by assembly of four trimeric subunits. We have previously shown that the quaternary structure of SP-D can be altered during inflammatory lung injury through its modification by S-nitrosylation, which in turn alters its functional behavior producing a proinflammatory response in effector cells

    Tiotropium Respimat® Versus HandiHaler®: Comparison of Bronchodilator Efficacy of Various Doses in Clinical Trials

    No full text
    <p><b>Article full text</b></p> <p><br></p> <p>The full text of this article can be found here<b>. </b><a href="https://link.springer.com/article/10.1007/s12325-016-0322-9">https://link.springer.com/article/10.1007/s12325-016-0322-9</a></p><p></p> <p><br></p> <p><b>Provide enhanced content for this article</b></p> <p><br></p> <p>If you are an author of this publication and would like to provide additional enhanced content for your article then please contact <a href="http://www.medengine.com/Redeem/”mailto:[email protected]”"><b>[email protected]</b></a>.</p> <p><br></p> <p>The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.</p> <p><br></p> <p>Other enhanced features include, but are not limited to:</p> <p><br></p> <p>• Slide decks</p> <p>• Videos and animations</p> <p>• Audio abstracts</p> <p>• Audio slides</p
    corecore