29 research outputs found

    Kalzium-abhÀngige zellulÀre Mechanismen ventrikulÀrer und atrialer Dysfunktion bei Herzinsuffizienz

    Get PDF
    In der vorliegenden Arbeit werden Mechanismen und therapeutische Ziele der ventrikulĂ€ren und atrialen Dysfunktion sowie deren Relevanz im Kontext einer systolischen oder diastolischen Herzinsuffizienz vorgestellt. Die zentralen Hypothesen sind: 1. Die Dyssynchronie der Kalziumfreisetzung und Kalziumentfernung ist wesentlich an der Pathophysiologie mechanischer atrialer und ventrikulĂ€rer Dysfunktion bei systolischer Herzinsuffizienz beteiligt. 2. Arrhythmien auf Ebene des Vorhofs werden im Kontext der systolischen Herzinsuffizienz durch lokale Unterschiede von am Kalziumhaushalt beteiligten und therapeutisch modulierbaren Proteinen begĂŒnstigt. 3. Bei der diastolischen Herzinsuffizienz und hypertensiven Herzerkrankung tragen verschiedene Kompensationsmechanismen zu einer Steigerung der KontraktilitĂ€t atrialer Zellen ex vivo bei. 4. Durch neurohumorale VerĂ€nderungen und die Interaktion von Fibroblasten sowie Kardiomyozyten kommt es zu einer in vivo und in vitro Dekompensation der atrialen mechanischen Funktion, welche zum HFpEF PhĂ€notyp und zur Entwicklung atrialer Arrhythmien beitragen könnte

    Oxidative Stress and Inflammatory Modulation of Ca2+ Handling in Metabolic HFpEF-Related Left Atrial Cardiomyopathy

    Get PDF
    Metabolic syndrome-mediated heart failure with preserved ejection fraction (HFpEF) is commonly accompanied by left atrial (LA) cardiomyopathy, significantly affecting morbidity and mortality. We evaluate the role of reactive oxygen species (ROS) and intrinsic inflammation (TNF-α, IL-10) related to dysfunctional Ca2+ homeostasis of LA cardiomyocytes in a rat model of metabolic HFpEF. ZFS-1 obese rats showed features of HFpEF and atrial cardiomyopathy in vivo: increased left ventricular (LV) mass, E/e' and LA size and preserved LV ejection fraction. In vitro, LA cardiomyocytes exhibited more mitochondrial-fission (MitoTracker) and ROS-production (H2DCF). In wildtype (WT), pro-inflammatory TNF-α impaired cellular Ca2+ homeostasis, while anti-inflammatory IL-10 had no notable effect (confocal microscopy; Fluo-4). In HFpEF, TNF-α had no effect on Ca2+ homeostasis associated with decreased TNF-α receptor expression (western blot). In addition, IL-10 substantially improved Ca2+ release and reuptake, while IL-10 receptor-1 expression was unaltered. Oxidative stress in metabolic syndrome mediated LA cardiomyopathy was increased and anti-inflammatory treatment positively affected dysfunctional Ca2+ homeostasis. Our data indicates, that patients with HFpEF-related LA dysfunction might profit from IL-10 targeted therapy, which should be further explored in preclinical trials

    Mechanistic assessment and ablation of left ventricular assist device related ventricular tachycardia in patients with severe heart failure

    Get PDF
    Aims: Left-ventricular-assist-devices (lvad) are an established treatment for patients with severe heart failure with reduced ejection fraction (HF) and reduce mortality. However, HF patients have significant substrate for ventricular tachycardia (VT) and the lvad itself might be pro-arrhythmogenic. We investigated the mechanism of VT in lvad-patients in relation to the underlying etiology and provide in silico and ex-vivo data for ablation in these HF patients.Methods and Results: We retrospectively analyzed invasive electrophysiological (EP) studies of 17 patients with VT and lvad. The mechanism of VT was determined using electroanatomical, entrainment and activation time mapping. Ischemic cardiomyopathy was present in 70% of patients. VT originated from the lvad region in >30%. 1/6 patients with VT originating from the lvad region had episodes before lvad implantation, while 7/11 patients with VT originating from other regions had episodes before implantation. Number and time of radiofrequency (RF)-ablation lesions were not different between VTs originating from the lvad or other regions. Long-term freedom from VT was 50% upon ablation in patients with VT originating from the lvad region and 64% if ablation was conducted in other regions. To potentially preemptively mitigate lvad related VT in patients undergoing lvad implantation, we obtained in silico derived data and performed ex-vivo experiments targeting ventricular myocardium. Of the tested settings, application of 25 W for 30 s was safe and associated with optimal lesion characteristics.Conclusion: A significant percentage of patients with lvad undergoing VT ablation exhibit arrhythmia originating in close vicinity to the device and recurrence rates are high. Based on in silico and ex-vivo data, we propose individualized RF-ablation in selected patients at risk for/with lvad related VT

    Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function

    Get PDF
    The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype

    Right‐ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca2+ homeostasis and myofilament sensitivity

    Get PDF
    Aim Heart failure with preserved ejection fraction (HFpEF) is frequently (30%) associated with right ventricular (RV) dysfunction, which increases morbidity and mortality in these patients. Yet cellular mechanisms of RV remodelling and RV dysfunction in HFpEF are not well understood. Here, we evaluated RV cardiomyocyte function in a rat model of metabolically induced HFpEF. Methods: and results Heart failure with preserved ejection fraction-prone animals (ZSF-1 obese) and control rats (Wistar Kyoto) were fed a high-caloric diet for 13 weeks. Haemodynamic characterization by echocardiography and invasive catheterization was performed at 22 and 23 weeks of age, respectively. After sacrifice, organ morphometry, RV histology, isolated RV cardiomyocyte function, and calcium (Ca2+) transients were assessed. ZSF-1 obese rats showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV diastolic dysfunction (including increased LV end-diastolic pressures and E/e ' ratio), and preserved LV ejection fraction. ZSF-1 obese animals developed RV dilatation (50% increased end-diastolic area) and mildly impaired RV ejection fraction (42%) with evidence of RV hypertrophy. In isolated RV cardiomyocytes from ZSF-1 obese rats, cell shortening amplitude was preserved, but cytosolic Ca2+ transient amplitude was reduced. In addition, augmentation of cytosolic Ca2+ release with increased stimulation frequency was lost in ZSF-1 obese rats. Myofilament sensitivity was increased, while contractile kinetics were largely unaffected in intact isolated RV cardiomyocytes from ZSF-1 obese rats. Western blot analysis revealed significantly increased phosphorylation of cardiac myosin-binding protein C (Ser282 cMyBP-C) but no change in phosphorylation of troponin I (Ser23, 24 TnI) in RV myocardium from ZSF-1 obese rats. Conclusions: Right ventricular dysfunction in obese ZSF-1 rats with HFpEF is associated with intrinsic RV cardiomyocyte remodelling including reduced cytosolic Ca2+ amplitudes, loss of frequency-dependent augmentation of Ca2+ release, and increased myofilament Ca2+ sensitivity

    Wearable cardioverter‐defibrillator: friend or foe in suspected myocarditis?

    Get PDF
    Aim: Wearable cardioverter defibrillator (WCD, LifeVest, and Zoll) therapy has become a useful tool to bridge a temporarily increased risk for sudden cardiac death. However, despite extensive use, there is a lack of evidence whether patients with myocarditis and impaired LVEF may benefit from treatment with a WCD. Methods and results: We conducted a single-centre retrospective observational study analysing patients with a WCD prescribed between September 2015 and April 2020 at our institution. In total, 135 patients were provided with a WCD, amongst these 76 patients (mean age 48.9 +/- 13.7 years; 84.2% male) for clinically suspected myocarditis. Based on the results of the endomyocardial biopsy and, where available cardiac magnetic resonance imaging, 39 patients (51.3%) were diagnosed with myocarditis and impaired LVEF and 37 patients (48.7%) with dilated cardiomyopathy (DCM) without evidence of cardiac inflammation. The main immunohistopathological myocarditis subtype was lymphocytic myocarditis in 36 (92.3%) patients, and four patients (10.3%) of this group had an acute myocarditis. Three patients had cardiac sarcoidosis (7.7%). Ventricular tachycardia occurred in seven myocarditis (in total 41 VTs; 85.4% non-sustained) and one DCM patients (in total one non-sustained ventricular tachycardia). Calculated necessary WCD wearing time until ventricular tachycardia occurrence is 86.41 days in myocarditis compared with 6.46 years in DCM patients. Conclusions: Our data suggest that myocarditis patients may benefit from WCD therapy. However, as our study is not powered for outcome, further randomized studies powered for the outcome morbidity and mortality are necessary

    Low‐voltage shock impedance measurements: A false sense of security

    Get PDF
    Background: Implantable cardioverter defibrillators use low-voltage shock impedance measurements to monitor the lead integrity. However, previous case reports suggest that low-voltage shock impedance measurements may fail to detect insulation breaches that can cause life-threatening electrical short circuits. Methods and results: We report six cases of insulation breaches in transvenous defibrillation leads that were not obvious during standard interrogations and testing of the lead beforehand. In two cases, an electrical short circuit during commanded shock delivery for internal electrical cardioversion resulted in a total damage of the ICD generator. In one of these cases, commanded shock delivery induced ventricular fibrillation, which required external defibrillation. In two cases, a shock due to ventricular tachycardia was aborted as the shock impedance was less than 20 Ω. However, in both cases the tiny residual shock energy terminated the ventricular tachycardia. In contrast, in one case the residual energy of the aborted shock did not end ventricular fibrillation induced at defibrillator threshold testing. In one case, the ICD indicated an error code for a short circuit condition detected during an adequate shock delivery. Conclusions: This case series illustrates that low-voltage shock impedance measurements can fail to detect insulation breaches. These data suggest that in patients without a contraindication, traditional defibrillator threshold testing or high voltage synchronized shock at the time of device replacement should be considered

    Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction

    Get PDF
    Aims: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). Methods and results: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca-2(+) reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca-2(+) release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+-wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. Conclusions: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity

    Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF

    Get PDF
    Background: Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. Methods: 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. Results: Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a similar to 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. Conclusion: The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials

    Impairment of the adrenergic reserve associated with exercise intolerance in a murine model of heart failure with preserved ejection fraction

    Get PDF
    This project is funded by grants from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—SFB 1470—A01 to FRH and PA and A02 to GGS) and from the DZHK (German Centre for Cardiovascular Research to GGS). CUO is additionally funded by the DFG (OE 688/4-1).Aim Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. Methods 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. Results HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. Conclusion In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.Peer reviewe
    corecore