370 research outputs found

    Electrostatic Evaluation of the ARES I FTS Antenna Materials

    Get PDF
    Surface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the windshield periodically depleted any charge accumulated. The configuration of the Ares I antenna assembly does not include any exposed metals in the vicinity and the windshield data could not be used. Since the windshield sensor data was unusable, we decided that the Patch 2 location would provide us with a rough approximation to the Ares I antenna configuration and would give us an indication of the possible charging levels that would develop. This was the data that we used in this study. Whether these charging levels would be of the same order of magnitude as the actual charges developed by the Ares I traversing a cloud with ice particles is at this point unknown. An actual experimental test, requiring the acquisition of additional instrumentation, is strongly advised before a final recommendation can be formulated regarding the safe levels of electrostatic charging on the antenna housing. Thus the results of this study should be considered to be preliminary

    Electrostatic Evaluation of the Propellant Handlers Ensemble

    Get PDF
    The Self-Contained Atmospheric Protective Ensemble (SCAPE) used in propellant handling at NASA's Kennedy Space Center (KSC) has recently completed a series of tests to determine its electrostatic properties of the coverall fabric used in the Propellant Handlers Ensemble (PHE). Understanding these electrostatic properties are fundamental to ensuring safe operations when working with flammable rocket propellants such as hydrazine, methyl hydrazine, and unsymmetrical dimethyl hydrazine. These tests include surface resistivity, charge decay, triboelectric charging, and flame incendivity. In this presentation, we will discuss the results of these tests on the current PHE as well as new fabrics and materials being evaluated for the next generation of PHE

    Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure

    Get PDF
    Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces

    Discrete Element Modeling of Triboelectrically Charged Particles

    Get PDF
    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and electric field effects requires calculation of the forces due to these effects

    Partial Model of Insulator/Insulator Contact Charging

    Get PDF
    Two papers present a two-phase equilibrium model that partly explains insulator/ insulator contact charging. In this model, a vapor of ions within a gas is in equilibrium with a submonolayer of ions of the same species that have been adsorbed on the surface of an insulator. The surface is modeled as having localized states, each with a certain energy of adsorption for an ion. In an earlier version of the model described in the first paper, the ions do not interact with each other. Using the grand canonical ensemble, the chemical potentials of both vapor and absorbed phases are derived and equated to determine the vapor pressure. If a charge is assigned to the vapor particles (in particular, if single ionization is assumed), then the surface charge density associated with adsorbed ions can be calculated as a function of pressure. In a later version of the model presented in the second paper, the submodel of the vapor phase is extended to include electrostatic interactions between vapor ions and adsorbed ones as well as the screening effect, at a given distance from the surface, of ions closer to the surface. Theoretical values of this model closely match preliminary experimental data on the discharge of insulators as a function of pressure

    Mitigation of Electrostatic Hazards on Spacecraft

    Get PDF
    Spacecraft are complex systems operating in challenging environments that require customized testing procedures designed to mitigate the unique hazards of a space launch environment. As an example of those testing procedures, we describe the test methodology and recommendations developed to mitigate electrostatic discharges that could have triggered an explosion of the Space Shuttle during launch, return to launch site, abort after one orbit, or during normal landing

    The influence of rifle carriage on the kinetics of human gait

    Get PDF
    The influence that rifle carriage has on human gait has received little attention in the published literature. Rifle carriage has two main effects, to add load to the anterior of the body and to restrict natural arm swing patterns. Kinetic data were collected from 15 male participants, with 10 trials in each of four experimental conditions. The conditions were: walking without a load (used as a control condition); carrying a lightweight rifle simulator, which restricted arm movements but applied no additional load; wearing a 4.4 kg diving belt, which allowed arms to move freely; carrying a weighted (4.4 kg) replica SA80 rifle. Walking speed was fixed at 1.5 m/s (+5%) and data were sampled at 400 Hz. Results showed that rifle carriage significantly alters the ground reaction forces produced during walking, the most important effects being an increase in the impact peak and mediolateral forces. This study suggests that these effects are due to the increased range of motion of the body’s centre of mass caused by the impeding of natural arm swing patterns. The subsequent effect on the potential development of injuries in rifle carriers is unknown

    What tweets tell us about MOOC participation

    Get PDF
    In this research paper, the authors analyze the collected Twitter data output during MobiMOOC 2011. This six-week data stream includes all tweets that contain the MOOC's hashtag (#mobiMOOC) and it has been analyzed using qualitative methodology. The analysis sought to examine the emotive vocabulary used, to determine if there was content-sharing via tweets, and to analyze the folksonomic trends of the tweets. In Addition sought a deeper understanding of what, and how, MOOC participants share what they share on the MOOC's Twitter channel. The aim of this study is to provide a little more insight into MOOC learner behaviors on Twitter so that future MOOC designers and facilitators can better engage with their learners.Facultad de Ciencias Exacta

    Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    Get PDF
    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions
    corecore