45 research outputs found

    Large-scale mapping of human protein–protein interactions by mass spectrometry

    Get PDF
    Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein–protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations

    Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms

    No full text
    Many molecular and cell biological details of the alphaherpesvirus assembly and egress pathway remain unclear. Recently we developed a live-cell fluorescence microscopy assay of pseudorabies virus (PRV) exocytosis, based on total internal reflection fluorescence (TIRF) microscopy and a virus-encoded pH-sensitive fluorescent probe. Here, we use this assay to distinguish three classes of viral exocytosis in a nonpolarized cell type: (i) trafficking of viral glycoproteins to the plasma membrane, (ii) exocytosis of viral light particles, and (iii) exocytosis of virions. We find that viral glycoproteins traffic to the cell surface in association with constitutive secretory Rab GTPases and exhibit free diffusion into the plasma membrane after exocytosis. Similarly, both virions and light particles use these same constitutive secretory mechanisms for egress from infected cells. Furthermore, we show that viral light particles are distinct from cellular exosomes. Together, these observations shed light on viral glycoprotein trafficking steps that precede virus particle assembly and reinforce the idea that virions and light particles share a biogenesis and trafficking pathway

    Quantitative Fluorescence Resonance Energy Transfer Microscopy Analysis of the Human Immunodeficiency Virus Type 1 Gag-Gag Interaction: Relative Contributions of the CA and NC Domains and Membrane Binding▿ †

    No full text
    The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other

    Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells.

    Get PDF
    T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs

    Triggering allows high-speed multi-channel live-imaging of axonal transport.

    No full text
    <p>Embryonic superior cervical ganglion (SCG) neurons were cultured in tri-chambers [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#pone.0143547.ref004" target="_blank">4</a>] and neurons in the soma-compartment were infected with PRV 137 expressing gM-EGFP (gM, green) and mRFP-VP26 (VP26, red). 10 hours post infection viral particle trafficking was imaged in axons penetrating into the middle and neuron compartment using non-triggered Arc lamp illumination (Arc lamp–no trigger) or triggered LED illumination (LED–trigger) (for details see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#sec002" target="_blank">Materials and Methods</a>), a) Three consecutive stills of a representative track for each mode with roughly the same length (≈14 sec) and average particle speed of ≈1.5μm/sec are shown. The time between consecutive dual-color images is ~106 ms for LED illumination and 625 ms for Arc lamp illumination. b) The same tracks as in a) shown as a Kymograph. As triggered LED illumination allows much higher frame rates, particle positions with LED illumination almost overlap in both channels while they do not for non-triggered Arc lamp illumination. c) Signal-to-noise ratio (SNR) calculated for each imaging condition. Scale bar indicates 5 μm.</p

    Koehler illumination results in superior illumination evenness.

    No full text
    <p>a) Schematic of critical (top) and Koehler modes. Images were inspired by [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#pone.0143547.ref015" target="_blank">15</a>]. In critical illumination, the LED light (green) is collimated using a collimation lens (blue) and projected onto the objective. The objective focuses the light, resulting in an image of the LED at the sample plane. In Koehler illumination mode, the collimated light gets focused onto the back focal plane (BFP) of the objective using a second lens (right most lens, blue). This way, the objective projects a collimated cone of light onto the sample plane, resulting in better illumination flatness. A set of two more lenses can be used to generate conjugate planes that than can be regulated by diaphragms to adjust the brightness, contrast, resolution and depth of field of the image (Aperture diaphragm) and the illuminated field of view (Field diaphragm) (grey box). In critical illumination with infinite conjugate plate, an Aperture diaphragm can be used to regulate brightness, contrast, resolution and depth of field. b) Brightness and illumination flatness in critical and Koehler illumination modes were measured on a custom-built epifluorescence microscope (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#sec002" target="_blank">Materials and Methods</a> for details). Representative images are shown and intensities are coded as colors as indicated in the legend and can be compared between critical and Koehler modes but not between LEDs as different exposure times were used. Koehler illumination showed a better field flatness and slightly increase in intensity (≈ 1.3–29.9% depending on image position for the 470 nm LED and about 2.8–12.96% for the 595 nm LED (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#pone.0143547.s005" target="_blank">S5 Table</a>)). c) Comparison of fluorescence intensity distributions. At least three images were taken and the fluorescent plastic slide was moved between images. Images were analyzed in Fiji [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0143547#pone.0143547.ref003" target="_blank">3</a>] by drawing a diagonal line ROI and intensities along that line were measured using the “plot profile” tool (black arrow). Resulting intensity values were imported into Matlab (Mathworks), the mean was calculated for three images each and means were normalized to their individual maxima and plotted as a line plot depicting the degree of illumination differences over the measured diagonal. Critical illumination with directly emitting LEDs (470 nm LED) lead to uneven illumination, while the evenness with the phosphor-converted LED (595 nm LED) was only slightly worse than with Koehler illumination.</p
    corecore