17 research outputs found

    Output-Based Refunding of Emission Payments: Theory, Distribution of Costs, and International Experience

    Get PDF
    In this paper, we discuss the effect of refunding environmental charges. Taxes often are resisted by polluters because they imply both abatement and tax costs. We show that when charges are refunded, the incentives for abatement are essentially the same as for a tax, but the output reduction that often accompanies a tax scheme is forgone. We describe and examine the refund emissions payment (REP) scheme as a policy instrument for emissions abatement and compare it with taxes and permits with regard to allocative properties, distribution of costs, property rights, and, consequently, the politics of implementation. As an empirical example, the Swedish charge on nitrogen oxides is analyzed.

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    Output-Based Refunding of Emission Payments: Theory, Distribution of Costs, and International Experience

    No full text
    In this paper, we discuss the effect of refunding environmental charges. Taxes often are resisted by polluters because they imply both abatement and tax costs. We show that when charges are refunded, the incentives for abatement are essentially the same as for a tax, but the output reduction that often accompanies a tax scheme is forgone. We describe and examine the refund emissions payment (REP) scheme as a policy instrument for emissions abatement and compare it with taxes and permits with regard to allocative properties, distribution of costs, property rights, and, consequently, the politics of implementation. As an empirical example, the Swedish charge on nitrogen oxides is analyzed

    Chapter 5: Anthropogenic methane sources, emissions and future projections

    No full text
    This chapter reviews recent global assessments of anthropogenic methane emissions, their expected future development and estimated reduction potentials. Because methane is a gas which mixes rapidly in the global atmosphere, it is of interest to review emissions at the global scale as well as for the area covered by the eight Arctic nations. The following key findings have been identified: • Bottom-up emission inventories agree fairly well in terms of the overall magnitude of global anthropogenic methane emissions in recent years, that is, about 300 Tg CH4 in 2000 and between 320 and 346 Tg CH4 in 2005. However, the relative contributions from the different source sectors differ markedly between inventories, which can be taken as an indication of high uncertainty within existing emission inventories despite the relatively close agreement between them in terms of total emissions. • Without further implementation of control policies addressing methane than currently adopted, global anthropogenic methane emissions are estimated to increase to between 400 and 500 Tg CH4 in 2030 and between 430 and 680 Tg CH4 in 2050. Primary drivers for the expected emission increase are increased coal production in China and extended shale gas extraction in the USA and Canada, activities which are known to release fugitive methane emissions. • With maximum technically feasible implementation of existing control technology, the estimated reduction potential for global anthropogenic methane emissions amounts to about 200 Tg CH4 in 2030, which is almost 50% below baseline emissions. The control technologies assessed to have the greatest reduction potentials are extended recovery of associated gas from oil production, control of fugitive leakages from gas production, transmission and distribution, extended separation, recycling and treatment of biodegradable waste instead of landfill disposal, extended pre-mining degasification of coal mines, and the implementation of ventilation air oxidizers on shafts from underground coal mines. • External factors, in particular the development of the future price of gas, could have significant effects on the future cost of reducing methane emissions and on the need for further policies to stimulate such reductions. The reason is that many measures to reduce methane emissions involve gas recovery or reduced gas leakage, which means potential opportunities to utilize the recovered gas as a source of energy. • With current policies addressing methane emissions, the eight Arctic nations are estimated to contribute about a fifth of global anthropogenic methane emissions. • As a single world region, the eight Arctic nations emit more anthropogenic methane and have a larger technical abatement potential than any other major world region (e.g. Latin America, Middle East, Africa or China). • The maximum technically feasible reduction of anthropogenic methane in Arctic nations in 2030 is estimated at 63% below baseline emissions or about a quarter of the entire global reduction potential. Within this reduction potential, measures related to fugitive methane emissions from shale gas extraction in the USA and Canada, reduced venting of associated gas from oil production in Russia, and reduced leakage from gas pipelines and distribution networks in all three countries, have the greatest potential to contribute to reduced methane emissions in Arctic nations.JRC.H.2-Air and Climat
    corecore