344 research outputs found

    Mapping Ice Sheet Grounding Lines With CryoSat-2

    Get PDF
    The boundary between grounded and floating ice is an important glaciological parameter, because it delineates the lateral extent of an ice sheet and it marks the optimal location for computing ice discharge. We present a method for detecting the grounding line as the break in ice sheet surface slope, computed from CryoSat-2 elevation measurements using a plane-fitting solution. We apply this technique to map the break in surface slope in four topographically diverse sectors of Antarctica - Filchner-Ronne Ice Shelf, Ekström Ice Shelf, Amundsen Sea sector, and the Larsen-C Ice Shelf - using CryoSat-2 observations acquired between July 2010 and May 2014. An inter-comparison of the CryoSat-2 break in surface slope with independent measurements of the hinge line determined from quadruple-difference SAR interferometry (QDInSAR) shows good overall agreement between techniques, with a mean separation of 4.5 km. In the Amundsen Sea sector, where in places over 35 km of hinge line retreat has occurred since 1992, the CryoSat-2 break in surface slope coincides with the most recent hinge line position, recorded in 2011. The technique we have developed is automatic, is computationally-efficient, can be repeated given further data, and offers a complementary tool for monitoring changes in the lateral extent of grounded ice

    Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery

    Get PDF
    Systematically monitoring Greenland's outlet glaciers is central to understanding the timescales over which their flow and sea level contributions evolve. In this study we use data from the new Sentinel-1a/b satellite constellation to generate 187 velocity maps, covering four key outlet glaciers in Greenland: Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm. These data provide a new high temporal resolution record (6-day averaged solutions) of each glacier's evolution since 2014, and resolve recent seasonal speedup periods and inter-annual changes in Greenland outlet glacier speed with an estimated certainty of 10 %. We find that since 2012, Jakobshavn Isbræ has been decelerating, and now flows approximately 1250 m yr−1 (10 %), slower than 5 years previously, thus reversing an increasing trend in ice velocity that has persisted during the last decade. Despite this, we show that seasonal variability in ice velocity remains significant: up to 750 m yr−1 (14 %) at a distance of 12 km inland of the terminus. We also use our new dataset to estimate the duration of speedup periods (80–95 days) and to demonstrate a strong relationship between ice front position and ice flow at Jakobshavn Isbræ, with increases in speed of  ∼  1800 m yr−1 in response to 1 km of retreat. Elsewhere, we record significant seasonal changes in flow of up to 25 % (2015) and 18 % (2016) at Petermann Glacier and Zachariæ Isstrøm, respectively. This study provides a first demonstration of the capacity of a new era of operational radar satellites to provide frequent and timely monitoring of ice sheet flow, and to better resolve the timescales over which glacier dynamics evolve

    A new digital elevation model of Antarctica derived from CryoSat-2 altimetry

    Get PDF
    We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are −0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m – a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry

    Seasonal Variations in the Flow of Land-Terminating Glaciers in Central-West Greenland Using Sentinel-1 Imagery

    Get PDF
    Land-terminating sectors of the Greenland ice sheet flow faster in summer after surface meltwater reaches the subglacial drainage system. Speedup occurs when the subglacial drainage system becomes saturated, leading to a reduction in the effective pressure which promotes sliding of the overlying ice. Here, we use observations acquired by the Sentinel-1a and b synthetic aperture radar to track changes in the speed of land- terminating glaciers across a 14,000 km2 sector of west-central Greenland on a weekly basis in 2016 and 2017. The fine spatial and temporal sampling of the satellite data allows us to map the speed of summer and winter across the entire sector and to resolve the weekly evolution of ice flow across the downstream portions of five glaciers. Near to the ice sheet margin (at 650 m.a.s.l.), glacier speedup begins around day 130, persisting for around 90 days, and then peaks around day 150. At four of the five glaciers included in our survey the peak speedup is similar in both years, in Russell Glacier there is marked interannual variability of 32% between 2016 and 2017. We present, for the first time, seasonal and altitudinal variation in speedup persistence. Our study demonstrates the value of Sentinel-1’s systematic and frequent acquisition plan for studying seasonal changes in ice sheet flow

    How dynamic are ice-stream beds?

    Get PDF
    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3–6 years apart, along a cumulative ∼ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a‾¹, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a‾¹ previously reported from repeat geophysical surveys in West Antarctica

    Association of C-Reactive Protein Genetic Polymorphisms With Late Age-Related Macular Degeneration

    Get PDF
    IMPORTANCE: C-reactive protein (CRP) is a circulating inflammatory marker associated with late age-related macular degeneration (AMD). It remains uncertain whether the association between CRP concentrations and AMD is causal. OBJECTIVE: To assess whether CRP (OMIM 123260) single-nucleotide polymorphisms that influence circulating CRP concentrations are associated with late AMD. DESIGN, SETTING, AND PARTICPIANTS: Participants in 2 UK, hospital-based, case-control studies (Cambridge AMD study and Moorfields Eye Hospital AMD study) and 1 pan-European, cross-sectional, population-based study (the European Eye [EUREYE] Study) were recruited between November 6, 2000, and April 30, 2007. Participants underwent dilated stereo-digital fundus photography graded according to the International Classification of Age-related Maculopathy and Macular Degeneration. There were 1727 cases of late AMD (1151 neovascular, 384 geographic atrophy, and 192 mixed [neovascular AMD and geographic atrophy]) and 1153 controls. Early AMD cases (n = 574) were included only from the EUREYE Study. Data analysis was performed from August 1 to November 30, 2016. Four common single-nucleotide polymorphisms (rs1205, rs1130864, rs1800947, and rs3093077) were selected based on demonstrated influence on circulating CRP concentrations in the literature. In one study, genotyping of rs3093077 failed, and rs1800947 was typed in only 1 study. MAIN OUTCOMES AND MEASURES: A genetic multiplicative model was used for the association of single-nucleotide polymorphisms with late AMD adjusted for age and sex. RESULTS: Among the 1727 patients with late AMD, the mean (SD) age was 78.7 (7.4) years, and 668 (38.7%) were men. The mean (SD) age of the controls was 74.9 (7.0) years, and 510 (44.2%) were men. In the pooled results of all 3 studies, neither rs1205 (odds ratio [OR], 0.99; 95% CI, 0.86-1.14) nor rs1130864 (OR, 0.96; 95% CI, 0.83-1.11) was associated with late AMD. For geographic atrophy, rs1205 had an OR of 0.91 (95% CI, 0.74-1.13) and rs1130864 had an OR of 0.94 (95% CI, 0.76-1.16). For neovascular AMD, rs1205 had an OR of 1.01 (95% CI, 0.87-1.19) and rs1130864 had an OR of 0.99 (95% CI, 0.84-1.16). There was no association of rs3093077 and rs1800947 with late AMD or any late AMD phenotype. There were no significant findings for early AMD. CONCLUSIONS AND RELEVANCE: Our results do not support a causal association between CRP concentrations and AMD

    Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking

    Get PDF
    BACKGROUND: The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a "COPD-like" SAE transcriptome. METHODOLOGY/PRINCIPAL FINDINGS: SAE (10th-12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (I(SAE)), with healthy smokers grouped into "high" and "low" responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with I(SAE) ranging from 2.9 to 51.5%. While the SAE transcriptome of "low" responder healthy smokers differed from both "high" responders and smokers with COPD, the transcriptome of the "high" responder healthy smokers was indistinguishable from COPD smokers. CONCLUSION/SIGNIFICANCE: The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a "COPD-like" SAE transcriptome

    Trends in Antarctic Ice Sheet Elevation and Mass

    Get PDF
    Fluctuations in Antarctic Ice Sheet elevation and mass occur over a variety of time scales, owing to changes in snowfall and ice flow. Here we disentangle these signals by combining 25 years of satellite radar altimeter observations and a regional climate model. From these measurements, patterns of change that are strongly associated with glaciological events emerge. While the majority of the ice sheet has remained stable, 24% of West Antarctica is now in a state of dynamical imbalance. Thinning of the Pine Island and Thwaites glacier basins reaches 122 m in places, and their rates of ice loss are now five times greater than at the start of our survey. By partitioning elevation changes into areas of snow and ice variability, we estimate that East and West Antarctica have contributed −1.1 ± 0.4 and +5.7 ± 0.8 mm to global sea level between 1992 and 201
    corecore