30 research outputs found

    Subtle changes in the flavour and texture of a drink enhance expectations of satiety

    Get PDF
    Background: The consumption of liquid calories has been implicated in the development of obesity and weight gain. Energy-containing drinks are often reported to have a weak satiety value: one explanation for this is that because of their fluid texture they are not expected to have much nutritional value. It is important to consider what features of these drinks can be manipulated to enhance their expected satiety value. Two studies investigated the perception of subtle changes in a drink’s viscosity, and the extent to which thick texture and creamy flavour contribute to the generation of satiety expectations. Participants in the first study rated the sensory characteristics of 16 fruit yogurt drinks of increasing viscosity. In study two, a new set of participants evaluated eight versions of the fruit yogurt drink, which varied in thick texture, creamy flavour and energy content, for sensory and hedonic characteristics and satiety expectations. Results: In study one, participants were able to perceive small changes in drink viscosity that were strongly related to the actual viscosity of the drinks. In study two, the thick versions of the drink were expected to be more filling and have a greater expected satiety value, independent of the drink’s actual energy content. A creamy flavour enhanced the extent to which the drink was expected to be filling, but did not affect its expected satiety. Conclusions: These results indicate that subtle manipulations of texture and creamy flavour can increase expectations that a fruit yogurt drink will be filling and suppress hunger, irrespective of the drink’s energy content. A thicker texture enhanced expectations of satiety to a greater extent than a creamier flavour, and may be one way to improve the anticipated satiating value of energy-containing beverages

    Keeping Pace with Your Eating: Visual Feedback Affects Eating Rate in Humans

    Get PDF
    Deliberately eating at a slower pace promotes satiation and eating quickly has been associated with a higher body mass index. Therefore, understanding factors that affect eating rate should be given high priority. Eating rate is affected by the physical/textural properties of a food, by motivational state, and by portion size and palatability. This study explored the prospect that eating rate is also influenced by a hitherto unexplored cognitive process that uses ongoing perceptual estimates of the volume of food remaining in a container to adjust intake during a meal. A 2 (amount seen; 300ml or 500ml) x 2 (amount eaten; 300ml or 500ml) between-subjects design was employed (10 participants in each condition). In two ‘congruent’ conditions, the same amount was seen at the outset and then subsequently consumed (300ml or 500ml). To dissociate visual feedback of portion size and actual amount consumed, food was covertly added or removed from a bowl using a peristaltic pump. This created two additional ‘incongruent’ conditions, in which 300ml was seen but 500ml was eaten or vice versa. We repeated these conditions using a savoury soup and a sweet dessert. Eating rate (ml per second) was assessed during lunch. After lunch we assessed fullness over a 60-minute period. In the congruent conditions, eating rate was unaffected by the actual volume of food that was consumed (300ml or 500ml). By contrast, we observed a marked difference across the incongruent conditions. Specifically, participants who saw 300ml but actually consumed 500ml ate at a faster rate than participants who saw 500ml but actually consumed 300ml. Participants were unaware that their portion size had been manipulated. Nevertheless, when it disappeared faster or slower than anticipated they adjusted their rate of eating accordingly. This suggests that the control of eating rate involves visual feedback and is not a simple reflexive response to orosensory stimulatio

    Effect of different protein sources on satiation and short-term satiety when consumed as a starter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because the source of protein may play a role in its satiating effect, we investigated the effect of different proteins on satiation and short-term satiety.</p> <p>Methods</p> <p>Two randomized single-blind cross-over studies were completed. In the first study, we investigated the effect of a preload containing 20 g of casein, whey, pea protein, egg albumin or maltodextrin vs. water control on food intake 30 min later in 32 male volunteers (25 ± 4 yrs, BMI 24 ± 0.4 kg/m<sup>2</sup>). Subjective appetite was assessed using visual analogue scales at 10 min intervals after the preload. Capillary blood glucose was measured every 30 min during 2 hrs before and after the ad libitum meal. In the second study, we compared the effect of 20 g of casein, pea protein or whey vs. water control on satiation in 32 male volunteers (25 ± 0.6 yrs, BMI 24 ± 0.5 kg/m<sup>2</sup>). The preload was consumed as a starter during an ad libitum meal and food intake was measured. The preloads in both studies were in the form of a beverage.</p> <p>Results</p> <p>In the first study, food intake was significantly lower only after casein and pea protein compared to water control (P = 0.02; 0.04 respectively). Caloric compensation was 110, 103, 62, 56 and 51% after casein, pea protein, whey, albumin and maltodextrin, respectively. Feelings of satiety were significantly higher after casein and pea protein compared to other preloads (P < 0.05). Blood glucose response to the meal was significantly lower when whey protein was consumed as a preload compared to other groups (P < 0.001). In the second study, results showed no difference between preloads on ad libitum intake. Total intake was significantly higher after caloric preloads compared to water control (P < 0.05).</p> <p>Conclusion</p> <p>Casein and pea protein showed a stronger effect on food intake compared to whey when consumed as a preload. However, consuming the protein preload as a starter of a meal decreased its impact on food intake as opposed to consuming it 30 min before the meal.</p

    Episodic Memory and Appetite Regulation in Humans

    Get PDF
    Psychological and neurobiological evidence implicates hippocampal-dependent memory processes in the control of hunger and food intake. In humans, these have been revealed in the hyperphagia that is associated with amnesia. However, it remains unclear whether 'memory for recent eating' plays a significant role in neurologically intact humans. In this study we isolated the extent to which memory for a recently consumed meal influences hunger and fullness over a three-hour period. Before lunch, half of our volunteers were shown 300 ml of soup and half were shown 500 ml. Orthogonal to this, half consumed 300 ml and half consumed 500 ml. This process yielded four separate groups (25 volunteers in each). Independent manipulation of the 'actual' and 'perceived' soup portion was achieved using a computer-controlled peristaltic pump. This was designed to either refill or draw soup from a soup bowl in a covert manner. Immediately after lunch, self-reported hunger was influenced by the actual and not the perceived amount of soup consumed. However, two and three hours after meal termination this pattern was reversed - hunger was predicted by the perceived amount and not the actual amount. Participants who thought they had consumed the larger 500-ml portion reported significantly less hunger. This was also associated with an increase in the 'expected satiation' of the soup 24-hours later. For the first time, this manipulation exposes the independent and important contribution of memory processes to satiety. Opportunities exist to capitalise on this finding to reduce energy intake in humans

    GABA Receptors and the Pharmacology of Sleep

    Get PDF
    Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia

    The maternal microbiome during pregnancy and allergic disease in the offspring

    Get PDF
    There is substantial epidemiological and mechanistic evidence that the increase in allergic disease and asthma in many parts of the world in part relates to changes in microbial exposures and diet acting via the composition and metabolic products of the intestinal microbiome. The majority of research in this field has focused on the gut microbiome during infancy, but it is increasingly clear that the maternal microbiome during pregnancy also has a key role in preventing an allergy-prone immune phenotype in the offspring. The mechanisms by which the maternal microbiome influences the developing fetal immune system include alignment between the maternal and infant regulatory immune status and transplacental passage of microbial metabolites and IgG. Interplay between microbial stimulatory factors such as lipopolysaccharides and regulatory factors such as short-chain fatty acids may also influence on fetal immune development. However, our understanding of these pathways is at an early stage and further mechanistic studies are needed. There are also no data from human studies relating the composition and metabolic activity of the maternal microbiome during pregnancy to the offspring's immune status at birth and risk of allergic disease. Improved knowledge of these pathways may inform novel strategies for tackling the increase in allergic disorders in the modern world

    Sensory Responses in Nutrition and Energy Balance : Role of Texture, Taste, and Smell in Eating Behavior

    No full text
    Billions of people, almost 40% of the world’s population, are either overweight or underweight, which is a direct consequence of the food environment. In more and more countries in the world, people are overweight in a large part due to the obesogenic food environment. The obesogenic food environment leads to an overconsumption of energy; it is obvious that sensory characteristics of food have a tremendous impact on food choice and intake. The chapter deals with the effects of texture, taste, and smell on intake. The effect of texture on energy intake is dramatic. Liquid and soft foods are consumed at much higher rates compared to more harder foods. The energy intake rate of energy dense liquids (like sugar sweetened beverages) and soft solids (like cake, sausage roll, minced meatball) is in the range of 150-450 kcal/min, quickly leading to overconsumption of energy. Liquid and soft solid calories are not well sensed by the sense of taste, due to their short oro-sensory exposure time per kcal ingested. Various recent studies show that across the food supplies in Australia, Malaysia, the Netherlands, and the USA, sweetness, umami, saltiness, and fat sensation intensities relate to concentrations of carbohydrates, protein salt, and fat in food. So, taste serves as nutrient sensing system, and this sensing system contributes to satiation. The role of smell is different. Retronasal smell sensations coming through flavors within foods do not have an impact on satiation; odors in the environment may lead to sensory specific appetites. In summary, sensory signals from foods have a large impact on energy intake, and designing foods in an optimal way leads to a higher satiating efficiency per kcal, while maintaining palatability. In this way we can make the healthy choice the happy choice
    corecore