2,109 research outputs found

    Holographic Geometry and Noise in Matrix Theory

    Full text link
    Using Matrix Theory as a concrete example of a fundamental holographic theory, we show that the emergent macroscopic spacetime displays a new macroscopic quantum structure, holographic geometry, and a new observable phenomenon, holographic noise, with phenomenology similar to that previously derived on the basis of a quasi-monochromatic wave theory. Traces of matrix operators on a light sheet with a compact dimension of size RR are interpreted as transverse position operators for macroscopic bodies. An effective quantum wave equation for spacetime is derived from the Matrix Hamiltonian. Its solutions display eigenmodes that connect longitudinal separation and transverse position operators on macroscopic scales. Measurements of transverse relative positions of macroscopically separated bodies, such as signals in Michelson interferometers, are shown to display holographic nonlocality, indeterminacy and noise, whose properties can be predicted with no parameters except RR. Similar results are derived using a detailed scattering calculation of the matrix wavefunction. Current experimental technology will allow a definitive and precise test or validation of this interpretation of holographic fundamental theories. In the latter case, they will yield a direct measurement of RR independent of the gravitational definition of the Planck length, and a direct measurement of the total number of degrees of freedom.Comment: 19 pages, 2 figures; v2: factors of Planck mass written explicitly, typos correcte

    Gravitational waves from the sound of a first order phase transition

    Get PDF
    We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make

    Testing General Relativity with Atom Interferometry

    Get PDF
    The unprecedented precision of atom interferometry will soon lead to laboratory tests of general relativity to levels that will rival or exceed those reached by astrophysical observations. We propose such an experiment that will initially test the equivalence principle to 1 part in 10^15 (300 times better than the current limit), and 1 part in 10^17 in the future. It will also probe general relativistic effects--such as the non-linear three-graviton coupling, the gravity of an atom's kinetic energy, and the falling of light--to several decimals. Further, in contrast to astrophysical observations, laboratory tests can isolate these effects via their different functional dependence on experimental variables.Comment: 4 pages, 1 figure; v2: Minor changes made for publicatio

    Quasar Proper Motions and Low-Frequency Gravitational Waves

    Get PDF
    We report observational upper limits on the mass-energy of the cosmological gravitational-wave background, from limits on proper motions of quasars. Gravitational waves with periods longer than the time span of observations produce a simple pattern of apparent proper motions over the sky, composed primarily of second-order transverse vector spherical harmonics. A fit of such harmonics to measured motions yields a 95%-confidence limit on the mass-energy of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the closure density of the universe.Comment: 15 pages, 1 figure. Also available at http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/index.htm

    Water sorption and hydration in spray-dried milk protein powders: Selected physicochemical properties

    Get PDF
    peer-reviewedLow and high protein dairy powders are prone to caking and sticking and can also be highly insoluble; with powder storage conditions an important factor responsible for such issues. The aim of this study focused on the bulk and surface properties of anhydrous and humidified spray-dried milk protein concentrate (MPC) powders (protein content ~40, 50, 60, 70 or 80%, w/w). Water sorption isotherms, polarized light and scanning electron micrographs showed crystallized lactose in low protein powders at high water activities. High protein systems demonstrated increased bulk diffusion coefficients compared to low protein systems. Glass transition temperatures, α-relaxation temperatures and structural strength significantly decreased with water uptake. CLSM measurements showed that humidified systems have slower real time water diffusion compared to anhydrous systems. Overall, the rate of water diffusion was higher for low protein powders but high protein powders absorbed higher levels of water under high humidity conditions
    • 

    corecore