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ABSTRACT

Several mechanisms have previously been proposed to explain differences between the shortwave re-
flectance of realistic cloud scenes computed using the 1D Independent Column Approximation (ICA) and
3D solutions of the radiative transfer equation. When the sun is low in the sky, interception of sunlight by
cloud sides tends to increase reflectance relative to ICA estimates that neglect this effect. When the sun is
high, 3D radiative transfer tends to make clouds less reflective, which we argue is explained by the mecha-
nism of “entrapment” whereby horizontal transport of radiation beneath a cloud layer increases the chances,
relative to the ICA, of light being absorbed by cloud or the surface. It is especially important for multi-layered
cloud scenes. We describe modifications to the previously described Speedy Algorithm for Radiative Transfer
through Cloud Sides (SPARTACUS) to represent different entrapment assumptions, and test their impact on
65 contrasting scenes from a cloud-resolving model. When entrapment is represented explicitly via a calcu-
lation of the mean horizontal distance traveled by reflectedlight, SPARTACUS predicts a mean “3D radiative
effect” (the difference in top-of-atmosphere irradiancesbetween 3D and ICA calculations) of 8.1 W m−2

for overhead sun. This is within 2% of broadband Monte Carlo calculations on the same scenes. The im-
portance of entrapment is highlighted by the finding that theextreme assumptions in SPARTACUS of “zero
entrapment” and “maximum entrapment” lead to corresponding mean 3D radiative effects of 1.7 W m−2 and
19.6 W m−2, respectively.

1. Introduction

A key challenge in atmospheric modeling for both
weather and climate prediction is to improve the inter-
action of clouds with solar and thermal-infrared radia-
tion. While the representation of sub-grid cloud hori-
zontal structure and vertical overlap is often now quite
sophisticated (e.g. Pincus et al. 2003; Hill et al. 2015;
Di Giuseppe and Tompkins 2015), a process missing from
all operational models is the horizontal transport of radi-
ation within gridboxes. This was characterized by Hogan
and Shonk (2013) as entirely associated with flow of ra-
diation through cloud sides, and led to the development

∗Corresponding author address:Robin J. Hogan, ECMWF, Shin-
field Park, Reading, RG2 9AX, UK.
E-mail: r.j.hogan@ecmwf.int

of the Speedy Algorithm For Radiative Transfer through
Cloud Sides (SPARTACUS; Hogan et al. 2016; Schäfer
et al. 2016). This solver is now available as an option in
the radiation scheme of the forecast model used by the
European Centre for Medium-Range Weather Forecasts,
ECMWF (Hogan and Bozzo 2018).

In the shortwave, the main effect of transport through
cloud sides is “side illumination”: the enhanced intercep-
tion of direct sunlight when the sun is low in the sky,
which increases the reflectance of the scene and equiva-
lently the magnitude of the cloud radiative effect (CRE).
However, Barker et al. (2015) reported Monte Carlo calcu-
lations showing that in realistic cloud scenes, the effect of
introducing 3D transport was more typically toreducethe
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magnitude of the CRE, particularly when the sun is high
in the sky.

Várnai and Davies (1999) characterized 3D solar radia-
tive effects in single-layer cloud scenes in terms of four
mechanisms, two of which reduce the reflectance of a
cloudy scene and are therefore candidates to explain this
behavior. Their “downward escape” mechanism explains
how forward-scattered sunlight inside a cloud has a chance
to escape through the side of a cloud and reach the sur-
face, whereas in the corresponding ICA case it would re-
main within the cloud and have more chance of being scat-
tered back to space. Welch and Wielicki (1984), Hogan
and Shonk (2013) and Barker et al. (2016) argued that this
escape mechanism explains why 3D effects reduce the re-
flectance of cumulus, stratocumulus, aircraft contrails and
stochastically generated cloud fields, for high-sun condi-
tions. This process is represented by SPARTACUS, but in
this paper we present evidence to show that it is not signif-
icant enough to explain the results of Barker et al. (2015),
which were for a wide range of realistic and often multi-
layered cloud scenes.

The second candidate mechanism from Várnai and
Davies (1999) is “upward trapping”, which incorporates
all light rays that (i) are reflected back to space in the
ICA case but not when 3D transport is included, and (ii)
have a longer path length in 3D than ICA. Their diagram
to explain how this mechanism typically acts in single-
layer cloud scenes depicted an upward traveling light ray
passing horizontally through the side of a cloud above, a
process that is already represented by SPARTACUS. How-
ever, it is also possible, particularly in multilayered scenes,
for trapping to occur without any transport through cloud
sides, but rather as a consequence of horizontal transport
entirely within a clear or cloudy region and the upward
reflected ray then intercepting the base of a cloud above.
This process is not explicitly handled by SPARTACUS. It
was alluded to by Barker and Davies (1992) who consid-
ered idealized single-layer clouds over a reflective surface,
but not studied in detail for realistic multilayered cloud
scenes.

In this paper, we seek to quantify the importance of this
mechanism, which we refer to as “entrapment”. In section
2, we describe it in more detail and present a simple math-
ematical example to illustrate how it reduces the scene re-
flectance. In section 3, we describe how the limits of zero
and maximum entrapment may be represented in SPAR-
TACUS. This is followed by two sections on the more
complex “explicit” entrapment calculations: section 4 de-
scribes how we estimate the horizontal distance traveled
by reflected radiation, with validation against monochro-
matic Monte Carlo simulations, while section 5 describes
how the distance traveled is used to compute how much
entrapment occurs, accounting for the fractal nature of
clouds. Readers uninterested in the internal workings of

SPARTACUS may wish to skip sections 3–5. Then in sec-
tion 6, estimates of the broadband shortwave 3D radia-
tive effect by the new SPARTACUS solver are evaluated
by comparing to Monte Carlo calculations performed on
65 diverse high-resolution scenes from a cloud-resolving
model.

2. The concept of entrapment

The schematic in Fig. 1 illustrates how entrapment can
change the reflectance of a cloud scene. Panel a depicts the
behavior assumed in the ICA, in which horizontal trans-
port is ignored: incoming solar radiation scattered upward
by the first cloud layer it encounters is likely to escape to
space since it passes back through the same clear-sky at-
mosphere (similar to the “opposition effect” in vegetation,
e.g. Hapke et al. 1996). Figure 1b illustrates the process
of entrapment by clouds when 3D transport is permitted:
radiation passing down through a clear-sky (or less opti-
cally thick) part of the atmosphere may be reflected back
upward at a slantwise angle and encounter the base of a
cloud due to horizontal transport within either the clear-
sky or cloudy region. The depiction of “upward trapping”
by Várnai and Davies (1999) was similar except that the
two cloud layers were part of the same cloud, and the re-
flected ray was intercepted by the edge rather than the base
of the upper layer. Since the area presented by the base of
a cloud is usually much larger than its edge, we would ex-
pect the impact of trapping by the base to be greater, on
average. Note that entrapment can also occur over reflec-
tive surfaces where the upward reflection is by the surface
rather than a cloud.

The interception of radiation by the upper cloud layer
reduces the reflectance of the scene, but the magnitude
of this effect depends on how far the radiation migrates
horizontally in the gap between the two cloud layers rela-
tive to the size of the clouds in the upper layer. Figure 1c
depicts the extreme case in which radiation is completely
horizontally homogenized in clear-sky layers. This “max-
imum entrapment” is actually the behavior of the origi-
nal shortwave implementation of SPARTACUS described
by Hogan et al. (2016), as well as other solvers such as
the three-region solver in the original Edwards and Slingo
(1996) radiation scheme that was adapted by Shonk and
Hogan (2008) to become the “Tripleclouds” solver. Shonk
and Hogan (2008) described this radiative homogenization
as “anomalous horizontal transport,” which is not really
accurate as at least some of this transport occurs in reality.
Nonetheless, their method to remove it and thus to move
from maximum entrapment (Fig. 1c) to zero entrapment
(Fig. 1a) provides the starting point for representing more
realistic explicit entrapment (Fig. 1b) in SPARTACUS.

To demonstrate the importance of the difference be-
tween zero and maximum entrapment, we can make some
idealizations and derive an analytic expression for scene
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(c) Maximum entrapment(a) Zero entrapment (b) Explicit entrapment
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FIG. 1. Schematic illustrating SPARTACUS’s three possible treatments of “entrapment” of solar radiation underneath clouds in the case of two
randomly overlapped cloud layers each of cloud fraction 1/2. In each panel the degree to which the downwelling irradiance has been attenuated
by the clouds above is indicated by the darkness of the shading. The black-headed arrows depict representative light paths discussed in the text.
The double-headed arrow in panel b indicates the horizontaldistance traveled by a single light ray reflected below half-level 3.5; the corresponding
meanhorizontal distances are computed in section 4.

reflectance in both cases. As in Fig. 1, we consider the
two cloud layers each to have a cloud fraction of 1/2, a
total cloud cover of 3/4 and to be in a vacuum over a sur-
face with an albedo of zero. Both cloud layers have the
same reflectanceR, and scatter conservatively so that their
transmittance isT = 1−R. In the zero-entrapment case
we apply the ICA, splitting the scene into four columns of
equal width. One is clear sky with a reflectance of zero,
two contain a single cloud layer with reflectanceR, and
the final column consists of two cloud layers, which the
Adding Method (Lacis and Hansen 1974) predicts to have
a reflectance of

R∗ = R+T2R/(1−R2) = 2R/(1+R). (1)

Thus the scene reflectance in the zero-entrapment limit is
the weighted sum of the reflectance of the four columns:

Rzero= R/2+R∗/4= R(1+R/2)/(1+R). (2)

This is depicted by the solid line in Fig. 2. In the limit of
a perfectly reflective cloud (R= 1), the scene reflectance
becomesRzero= 3/4.

Now consider the other extreme: maximum entrapment
as depicted in Fig. 1c. Since radiation passing through
a clear-sky layer retains no memory of its horizontal lo-
cation with respect to the clouds it has passed through in
other layers, we consider the entire domain as a single col-
umn. Thus the reflectance of a layer with a cloud fraction
of 1/2 isR/2, while its transmittance is 1−R/2. Applying
the Adding Method to obtain the reflectance of the scene
simply involves replacingRby R/2 in (1), yielding

Rmax= 2R/(2+R). (3)

This is depicted by the dashed line in Fig. 2, and in the
limit of a perfectly reflecting cloud the scene reflectance
becomesRmax = 2/3. This is significantly less than the
ICA value of 3/4, suggesting that entrapment is an im-
portant process to treat when modeling the 3D shortwave
radiative effects of clouds.

0 0.2 0.4 0.6 0.8 1
Reflectance of cloud layers

0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

 o
f s

ce
ne

Zero entrapment (ICA)
Maximum entrapment

FIG. 2. Reflectance of the idealized scene discussed in section
2, composed of two randomly-overlapped non-absorbing cloud layers
each with a cloud fraction of 1/2, over a black surface in vacuum. The
solid line depicts Eq. 2 and the dashed line depicts Eq. 3.

3. Representing entrapment scenarios in SPARTACUS

Here we explain how SPARTACUS may be modified
to represent zero and maximum entrapment, illustrated in
Fig. 1, as well as the first step in representing explicit
entrapment. The symbols used in more than one equa-
tion in sections 3–5 are defined in Appendix B. SPAR-
TACUS uses the Tripleclouds approach of splitting each
cloudy layer into three regions, one clear (denoteda) and
two cloudy (denotedb andc) with different optical depths.
The radiation problem can then be written in terms of vec-
tors and matrices; for example,u = (ua ub uc)T is a col-
umn vector containing the upwelling diffuse irradiances at
a particular height in each of the three regions. Note that
the irradiance componentu j is defined to be power in re-
gion j per unit area of the entire grid box, not per unit area
of region j .
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In order to represent the full range of entrapment sce-
narios, two aspects of the SPARTACUS implementation of
Hogan et al. (2016) require modification, both in the up-
ward pass of the Adding Method (their Eqs. 24–30). The
first change is to describe the direct solar beam in terms
of Di−1/2, the albedo todirect radiation of the entire at-
mosphere and surface below half leveli −1/2. This ac-
companiesA i−1/2, which is the corresponding albedo to
downwellingdiffuseradiation. (As shown in Fig. 1a, we
index full atmospheric layers byi, counting down from the
highest layeri = 1, and half leveli −1/2 refers to the in-
terface between layersi −1 andi.) This change mirrors
the application by Hogan et al. (2018) of SPARTACUS to
vegetation. Both of these albedos are matrices of the form

A =





Aaa Aba Aca

Aab Abb Acb

Aac Abc Acc



 , (4)

whereA jk is the fraction of diffuse downwelling radiation
in region j that is reflected up in regionk. These defi-
nitions ensure thatu at any given height is equal to the
sum of reflection of the downward diffuse irradiancev and
the downward direct irradiances (Eq. 40 of Hogan et al.
2018):u = Av+Ds.

The second change needed to represent entrapment con-
cerns how these albedo matrices are translated from the
top of one layer to the base of the layer above, account-
ing for the overlap of the clouds and associated regions
in the two layers. We follow Hogan et al. (2016) and de-
fineAbelowi−1/2 as the albedo of the atmosphere just below
half-level i −1/2, so using the region definitions of layer
i. Likewise,Aabovei−1/2 is the albedo just above this half
level, using the region definitions of layeri −1. Equation
30 of Hogan et al. (2016) relates the two according to the
maximum-entrapment assumption:

Aabovei−1/2 = Ui−1/2Abelowi−1/2V i−1/2, (5)

where U and V are the upward and downward overlap
matrices. They are defined such thatuabove= Uubelow
andvbelow = Vvabove; that is, they map irradiances pass-
ing through a half-level on to the regions of the layer the
radiation is entering. To see how (5) leads to maximum
entrapment, consider what happens at half-level 3.5 in the
two-region example of Fig. 1, where the matrices would
be:

U3.5 =

(

1/2 0
1/2 0

)

;

Abelow3.5 =

(

A 0
0 0

)

;

V3.5 =

(

1 1
0 0

)

, (6)

whereA is the albedo of the atmosphere below half level
3.5. Applying (5) yields

Aabove3.5 =

(

A/2 A/2
A/2 A/2

)

. (7)

This confirms that radiation exiting the base of either the
clear or cloudy regions in layer 3 has an equal probability
of being reflected back up into either of these two regions.

Shonk and Hogan (2008) described how to eliminate
this horizontal transport in their Tripleclouds solver and
thereby achieve zero entrapment; their solution may be
written as

aabovei−1/2 = VT
i−1/2abelowi−1/2, (8)

wherea is a column vector containing the reflectances of
each region with the assumption that light is always re-
flected up from the same region it enters. Since Triple-
clouds neglects lateral radiation flows between regions,A
is diagonal anda simply contains its diagonal elements.
To apply the zero-entrapment assumption to a SPARTA-
CUS simulation that includes lateral flows between re-
gions,abelowi−1/2 is defined such that itsj th element con-
tains the sum of thej th column ofAbelowi−1/2. Physically
this means that flows represented by the white-headed ar-
rows in Fig. 3, which involve reflection up into a different
region of the upper layer, are forced to be reflected up into
the same region. After applying (8),Aabovei−1/2 is defined
to be a diagonal matrix with its diagonal elements given
by aabovei−1/2 and the rest of SPARTACUS is unchanged.
Applying zero entrapment to the matrices in (6) yields

Aabove3.5 =

(

A 0
0 A

)

, (9)

which indicates that, as required, radiation exiting the base
of either region of layer 3 is reflected back up into the same
region.

To represent explicit entrapment we first assume that ra-
diation that travels far enough horizontally to pass through
a cloud edge (represented by the off-diagonal elements of
Abelowi−1/2 and shown in Fig. 3a) has lost memory of the
region it originated from in layeri −1, so can be treated
by maximum entrapment. By contrast, the destination of
reflected radiation that does not pass through a cloud edge
(the diagonal elements ofAbelowi−1/2 illustrated in Fig. 3b)
is computed taking account of the mean horizontal dis-
tance traveled. Mathematically this is achieved (in the 2-
region case) by

Aabovei−1/2

= Ui−1/2

(

0 Aba
belowi−1/2

Aab
belowi−1/2 0

)

V i−1/2

+ ∑
j=a,b

A j j
belowi−1/2L j

i−1/2

(

Va j
i−1/2 0

0 Vb j
i−1/2

)

, (10)
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Layer:
(b) Diagonal elements(a) Off−diagonal elements

FIG. 3. Schematic illustrating the radiation paths consideredwhen computing entrapment at half-leveli−1/2. (a) The four paths that contribute
to Aab

belowi−1/2, which is the off-diagonal element ofAbelowi−1/2 that represents the fraction of radiation downwelling intoregiona (clear sky) of
layer i that is scattered back up into regionb (cloud) of the same layer. (b) The four paths that contributeto Aaa

belowi−1/2, which is the diagonal
element ofAbelowi−1/2 that represents the fraction of radiation downwelling intoregiona of layer i that is scattered back up in the same region.
Note that in practice we include radiation paths that pass through the base of layeri and are reflected back by the lower layers. The white-headed
arrows represent radiation flows involving reflection back up into a different region of layeri−1.

and similarly forDabovei−1/2. The first term on the right-
hand side is the maximum-entrapment formula (Eq. 5) ap-
plied just to the off-diagonal elements. The second term
on the right-hand side containsA j j

belowi−1/2, the j th diago-
nal ofAbelowi−1/2, as well as elements from thej th row of
V i−1/2.

Matrix L j
i−1/2 is central to SPARTACUS’s representa-

tion of explicit entrapment: it expresses how much lat-
eral transport occurs for reflected radiation within regionj
of layer i, but also accounting for radiation passing down
through the layers below. Its elements quantify the weight
of each of the arrows in Fig. 3b. Since it repartitions radi-
ation between regions without changing the total energy,
its columns sum to 1 (i.e. it is a left stochastic matrix).
If we wished for the diagonal elements ofAbelowi−1/2 to
be treated with zero entrapment (thereby eliminating the
white-headed arrows in Fig. 3b), then we could simply set
L j

i−1/2 to the identity matrix leading to the second term
on the right-hand side behaving exactly as (8). Otherwise,
L j

i−1/2 is computed in a two-step process. Section 4 de-
scribes and validates the first step: computing the mean
horizontal distance traveled by reflected radiation. Section
5 describes and validates the second step: using the mean
horizontal distance traveled to compute the elements of
matrix L j

i−1/2 and hence how much radiation is “trapped”
by passing across the dashed line in Fig. 3b.

4. Explicit entrapment: horizontal distance traveled
by reflected radiation

The white-headed arrow in Fig. 1b illustrates the hori-
zontal distance traveled by a single light ray reflected be-
low half-level 3.5, and includes the horizontal distance as-
sociated with both the downward and upward parts of the
journey. This section deals with the task of estimating
the meanhorizontal distance traveled by reflected radia-
tion below a particular half-leveli −1/2, considering all
possible light paths, including those that penetrate down
and up through multiple layers. However, we exclude light

paths that pass laterally through cloud boundaries, as these
are treated by maximum entrapment embodied in the first
term on the right-hand side of (10). Since the downward
part of the journey depends on whether the incoming radi-
ation at half-leveli −1/2 is diffuse or direct, we compute
separate diffuse and direct mean horizontal distances, de-
notedxi−1/2 andyi−1/2, respectively. But note that light
rays contributing toyi−1/2 can only strictly be considered
to be “direct” sunlight until their first scattering event.

a. Method

We consider a plane-parallel atmosphere (i.e. contain-
ing one region in each layer), and later adapt it to multiple
regions. The horizontal distance traveled by direct radia-
tion passing through a single layeri is

∆yi = ∆zi tanθ0, (11)

where∆zi is the physical thickness of the layer andθ0
is the solar zenith angle. It was shown by Schäfer et al.
(2016) that the equivalent expression for isotropic diffuse
radiation is

∆xi = ∆ziπ/2. (12)

We use these as building blocks in our estimate of distance
traveled during reflection from multiple layers. Consider
how the two-stream Adding Method is applied for diffuse
radiation in a single layeri: given the layer reflectance
Ri and transmittanceTi , the scene albedo at the top of the
layer is given by

Ai−1/2=Ri+T2
i Ai+1/2

[

1+RiAi+1/2+(RiAi+1/2)
2+ · · ·

]

,
(13)

whereAi+1/2 is the scene albedo at the bottom of the layer
and the terms in the square brackets represent multiple re-
flections between layeri and the atmosphere below. This
is a geometric series that reduces to

Ai−1/2 = Ri +T2
i Ai+1/2/

(

1−RiAi+1/2
)

. (14)

It can be adapted to computexi−1/2, the mean horizontal
distance traveled by reflected radiation below the top of the
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layer, as the weighted average of the distances associated
with each order of scattering in (13):

Ai−1/2xi−1/2 = Ri x̂i +T2
i Ai+1/2

×
{

2x̂i +xi+1/2

+RiAi+1/2

[

x̂i +
√

2
(

x̂i +xi+1/2
)

]

+(RiAi+1/2)
2
[

x̂i +
√

3
(

x̂i +xi+1/2
)

]

+ · · ·} , (15)

wherexi+1/2 is the mean distance traveled by reflected ra-
diation below the base of layeri. The first term on the
right-hand side contains ˆxi , the mean horizontal distance
traveled by radiation that is reflected by layeri, rather than
penetrating the layer and being reflected by the layers be-
low. We assume that, on average, such radiation pene-
trates to the center of the layer before being reflected back
out (hence traveling a distance∆xi/2 on each of the down-
ward and upward paths), and that the azimuthal scattering
angle at the point of reflection is random (so these dis-
tances should be added in quadrature) leading to

x̂i =
[

2(∆xi/2)2]1/2
= ∆xi/

√
2. (16)

This neglects the additional distance associated with mul-
tiple scattering entirely within a layer, but the good perfor-
mance reported in section 4b suggests that this is a small
effect in practice.

The first line in the curly brackets in (15) represents
radiation that passes down through the entire layeri and
back up again, so the horizontal distance associated with
transiting the layer is twice that of radiation reflected by
the layer (the 2 ˆxi term), and is added to the distance asso-
ciated with reflection by the layers below half leveli+1/2
(thexi+1/2 term). The subsequent lines in the curly brack-
ets in (15) include multiple reflections between layeri and
the layers below half leveli +1/2. Each reflection adds
x̂i + xi+1/2 to the distance traveled, but due to the random
azimuthal scattering angle, they again should be added in
quadrature leading to the square-root weighting term.

Equation (15) may be rearranged to obtain

xi−1/2 = x̂i+
T2

i Ai+1/2

Ai−1/2

(

x̂i +xi+1/2
)

×
∞

∑
j=0

√

j +1
(

RiAi+1/2
) j
. (17)

Can we reduce this infinite series to a closed-form ex-
pression as before? Equation 14 exploited the fact that
∑∞

j=0a j = (1− a)−1, and by differentiating this expres-
sion we find that∑∞

j=0( j +1)a j = (1−a)−2. The infinite
series in (17) lies, in some sense, between these two se-
ries, and we find empirically that to a good approximation

∑∞
j=0

√
j +1a j ≃ (1−a)−1.5, which has errors of less than

10% fora< 0.9. Thus we approximate (17) by

xi−1/2 ≃ x̂i+
T2

i Ai+1/2
(

x̂i +xi+1/2
)

Ai−1/2
(

1−RiAi+1/2
)1.5 . (18)

This equation may be applied sequentially from the sur-
face up through the atmosphere to obtain a profile of
xi−1/2. The surface value isxn+1/2 = 0, since reflection
right at the surface is not associated with any horizontal
transport.

Next we seek an equivalent expression foryi−1/2, the
horizontal distance traveled by reflecteddirect radiation.
The equivalent expression to (14) for the albedo to direct
radiation is

Di−1/2 = S+i +Ti
S−i Ai+1/2+EiDi+1/2

1−RiAi+1/2
, (19)

where three new layer properties have been introduced:Ei

is the fraction of direct radiation that penetrates the layer
without being scattered,S−i is the fraction that penetrates
the layer but is scattered on the way (so emerging into the
diffuse stream at the base of the layer), whileS+i is the
reflectance of the layer to direct radiation.

The mean horizontal transport associated with reflec-
tion by theS+i term we denote as ˆyi , and is assumed to be
associated with direct radiation that penetrates to the cen-
ter of the layer followed by a scattering event and a diffuse
path back to the top of the layer. Therefore we add∆yi/2
and∆xi/2 in quadrature:

ŷi =
1
2

(

∆y2
i +∆x2

i

)1/2
. (20)

The two terms on the numerator of the right-hand side of
(19) represent the two ways that direct radiation can pen-
etrate the layer: with and without being scattered on the
way. When scattering occurs, the diffuse albedoAi+1/2 is
involved, which is associated with diffuse horizontal dis-
tancexi+1/2, whereas when scattering does not occur, the
direct albedoDi+1/2 is involved, which is associated with
direct horizontal distanceyi+1/2. Subsequent reflections,
governed by the denominator of (19), all involve the ad-
dition of the diffuse horizontal distancexi+1/2. Applying
the logic of (15) leads to terms involving the addition, in
quadrature, ofyi+1/2 (associated with a direct reflection)
and one or more ofxi+1/2 (associated with one or more
internal diffuse reflections). Unfortunately, these termsdo
not reduce conveniently to a closed-form expression like
(18). Therefore we make the approximation that in any
term involving the combination ofyi+1/2 andxi+1/2, yi+1/2
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can be replaced byxi+1/2, leading to

yi−1/2 ≃ ŷi +
Ti

Di−1/2

×
{[

S−i Ai+1/2ξ +EiDi+1/2(ξ −1)
](

x̂i +xi+1/2
)

+EiDi+1/2
(

ŷi +yi+1/2
)}

, (21)

where
ξ =

(

1−RiAi+1/2
)−1.5

. (22)

In a plane-parallel atmosphere, (14), (18), (19) and (21)
may be applied sequentially from the surface to top-of-
atmosphere (TOA), to obtain profiles ofxi−1/2 andyi−1/2.
We stress that even though the calculation proceeds in a
single upward pass through the atmosphere, the computed
mean horizontal distances include both the downward and
upward parts of the journey of reflected light rays. We
need the horizontal distance traveled in partially cloudy
profiles, so seek vectorsx andy whose j th elements con-
tain the horizontal distances associated with regionj . As
illustrated in Fig. 3b, each region is considered indepen-
dently, so we may still use these four equations to step
the elements ofx andy from the base of the layer to the
top. The other inputs to these equations,Ri , Ti , Ei, S±i ,
Ai+1/2 and Di+1/2 are taken as the diagonal elements to
the corresponding matrices available in the SPARTACUS
computation. Physically, the diagonal elements are used
because we are interested in horizontal transport that re-
mains within a region in layeri; radiation that passes lat-
erally between regions in layeri was dealt with by (10).
The final aspect to deal with partially cloudy profiles is to
translatex andy from the regions below half-leveli−1/2
to the regions above. We use the relevant overlap matrix
similarly to the operation in (8):

xabovei−1/2 = VT
i−1/2xbelowi−1/2, (23)

and likewise fory.

b. Evaluation

Here we evaluate the estimates of mean horizontal dis-
tance traveled by reflected radiation as a function of height
(the values ofx andy above), using Monte Carlo calcula-
tions by the model of Villefranque et al. (2019), which im-
plements ray-tracing techniques from computer graphics
and permits the paths of individual photons to be tracked.
The results are shown in Fig. 4 for four cloud scenes
and three solar zenith angles in simulations using periodic
boundary conditions in the horizontal. All are at a single
wavelength in vacuum with idealized cloud optical proper-
ties over a Lambertian surface with an albedo of 0.2. The
first profile (panels a–d) consists of a plane-parallel cloud
layer containing isotropic scatterers with an optical depth
of 1 and a single-scattering albedo of 0.999,999. Beneath
the cloud, all reflection is from the surface so the mean

horizontal distance traveled increases linearly with height
above the surface,z. The “direct” mean horizontal dis-
tance,y, increases withθ0 due to (11), but is not zero for
overhead sun since it includes the return journey from the
surface to heightzas diffuse radiation. Within the cloud a
fraction of downwelling radiation is reflected by the cloud,
rather than the surface, and so the mean horizontal dis-
tance is reduced. We see that the SPARTACUS estimates
using the method described above are accurate to around
10% forx and 3% fory. The second profile (panels e–h) is
the same but with an optical depth of 5. The SPARTACUS
errors are somewhat larger at around 18%.

The last two profiles contain more realistic clouds. Both
assume an asymmetry factor of 0.86, appropriate for liq-
uid clouds in the mid-visible. SPARTACUS then performs
the usual delta-Eddington scaling, treating some of the
forward scattered light as if it had not been scattered at
all. To achieve a fair comparison in terms of the defini-
tion of “direct” and “diffuse” radiation, the Monte Carlo
model takes the delta-Eddington-scaled extinction coeffi-
cient, and assumes a Henyey-Greenstein scattering phase
function using the delta-Eddington-scaled asymmetry fac-
tor value of 0.462. Panels i–l of Fig. 4 show the re-
sults for a 6.4× 6.4 km large-eddy simulation of cumu-
lus clouds from Brown et al. (2002), which was also used
by Hogan et al. (2016) and is based on an observed case
from the Atmospheric Radiation Measurement (ARM)
program. Panels m–p show the results for a 100×100 km
scene from a 250-m simulation by the Canadian Global
Environmental Multiscale (GEM) model of a multilayer
liquid cloud (Pacific scene 16). The GEM scenes are de-
scribed in detail in section 6. In both the ARM and the
GEM cases, the typical SPARTACUS errors are 25% forx
and 6% fory. Given the simplifications involved, SPAR-
TACUS performs very well in estimating horizontal dis-
tance traveled, and should be adequate to feed into the fi-
nal step for computing entrapment.

5. Explicit entrapment: how much radiation is
trapped?

a. Method

Here we use the estimated mean horizontal distances
from the previous section to compute the matrixL j

i−1/2 in

(10). The meaning ofL j
i−1/2 in the two-region case can

be explained by considering how it acts onw j
i−1/2(x) =

(

w ja w jb
)T

, wherew jk is the fraction of radiative energy
in region j of layer i that lies beneath regionk in layer
i −1. It is denoted as a function of the mean horizontal
distance traveled,x, since the radiation entered the layer.
L j

i−1/2 is then defined such that

w j
i−1/2(x

j
i−1/2) = L j

i−1/2w j
i−1/2(0), (24)
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FIG. 4. The mean horizontal distances traveled by reflected light, for diffuse and direct downwelling radiation (x andy in the text, respectively),
as computed from Monte Carlo simulations (solid lines) and estimated by SPARTACUS (dashed lines) using the method described in section 4.
Each row of panels corresponds to a different atmospheric profile described in the text, with the cloud fraction in the left column and subsequent
columns showing results for solar zenith angles (SZAs) of 0◦, 44◦ and 70◦. The final row corresponds to the cloud shown in Fig. 5c. The error
bars show the error on the mean from the Monte Carlo calculations; note that the Monte Carlo model can only compute mean distances given a
sufficient number of photons, so does not showx above cloud top ory deep in an optically thick cloud.

wherew j (0) represents the radiation partitioning at the in-

stant the radiation enters the layer from above (when the
horizontal distance traveled is zero) andw j

i−1/2(x
j
i−1/2) is

the radiation partitioning at the instant it leaves the layer

after being reflected (when the mean distance traveled is
x j

i−1/2). Hence the diagonal elements ofL j
i−1/2 are rep-

resented by the black-headed arrows in Fig. 3b and the

off-diagonals by the white-headed arrows. Note that (10)
includes the albedoA j j

belowi−1/2 so L j
i−1/2 describes only

the redistribution of energy, and therefore the sum of the
elements inw j

i−1/2(x) is constant at 1 for anyx.

How can we computeL j
i−1/2, accounting for the pos-

sibility of radiation passing across the dashed line in Fig.
3b more than once? This can occur via multiple scattering
events in the layers belowi −1/2, as well as via radiation
passing beneath small clouds and emerging on the other
side. The problem is analogous to the original SPARTA-
CUS problem of working out the net exchange of radiation
through cloud sides, and so we can use the same method.
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Essentially we wish to solve a system of coupled differen-
tial equations of the form:

dw j
i−1/2

dx
=ΓΓΓw j

i−1/2, (25)

where the matrixΓΓΓ contains the rates of radiation ex-
change between the “subregions” of regionj (with sub-
regions defined by the regions of layeri −1 that they are
beneath, illustrated by the dashed line in Fig. 3b), and

ΓΓΓ =

(

− f ab + f ba

+ f ab − f ba

)

, (26)

where f kl is the rate at which radiation (direct or diffuse)
is transported from subregionk to l , per unit increase in
horizontal distance traveledx. The solution to (25) is (24)
but withL j

i−1/2 written as a matrix exponential:

L j
i−1/2 = exp

(

ΓΓΓx j
i−1/2

)

. (27)

The repeated elements in (26) mean that the matrix ex-
ponential may be computed efficiently for both the two-
and three-region cases as described in the appendix of
Hogan et al. (2018). The same method is used to com-
pute the contribution to the direct albedo matrix, but using
the direct horizontal distance traveledy j

i−1/2.

b. Representing fractal behavior

To test the validity of this approach, we use the con-
trasting binary cloud scenes shown in Figs. 5a–5d, which
have been generated by applying an optical-depth thresh-
old to four of the GEM simulations described in section 6.
A scalar field is defined containing a value of 1 in the clear
(black) areas and 0 in the cloudy (white) areas, which can
be thought of as solar radiation that has passed through
the gaps between the clouds. Gaussian smoothing is then
applied to the field with varying smoothing scalesx, rep-
resenting horizontal radiation transport beneath the cloud.
Previous studies of the interaction of radiation and clouds
have found a Gaussian to be reasonably good at describing
the horizontal distribution of diffuse radiation originating
from a point source (e.g. Hogan and Battaglia 2008; Wiss-
meier et al. 2013). The fraction of the total scalar field that
is then in the cloudy parts of the domain is the “trapped
fraction”, and is shown by the black lines in Figs. 5e–5h.
The dotted lines show the cloud cover, which corresponds
to the trapped fraction one would expect if the radiative
energy were completely homogenized horizontally (maxi-
mum entrapment).

To apply the matrix-exponential method described
above to estimate the trapped fraction we need to define
the lateral exchange rates in (26). From the geometric ar-
guments of Hogan and Shonk (2013), we would expect

f kl = Lkl/πck, (28)

whereLkl is the length of the interface between regions
k and l (i.e. the perimeter length of the clouds) per unit
area of the domain, andck is the fractional area of region
k, both of which can be obtained by analyzing the binary
cloud fields. We then apply (26) and (27) to obtainL , the
bottom-left element of which is the fraction of radiative
energy beneath the cloud shown by the solid gray lines in
Figs. 5e–5h. It can be seen that this is a good prediction of
the trapped fraction for low values ofx, but for largerx it
overestimates entrapment significantly.

This can be explained by the fractal nature of clouds.
The Hogan and Shonk (2013) definition of lateral ex-
change rates imposes a length scale on the cloud field
based on the perimeter length. For example, we could
define the “effective cloud scale”S (see Eq. 20 of
Hogan et al. 2018) such that normalized perimeter length
is

Lab = 4ca(1−ca)/S, (29)

whereS can be thought of as the size that equally-sized
squares would need to have if they were placed randomly
on a grid and their fractional cover and total perime-
ter length were equal to the values for the actual cloud
field. The S values for the scenes in Fig. 5 are shown
above panels e–h. Substitution of (29) into (28) gives
f ab = 4(1− ca)/πS, indicating that the rate of exchange
between regions is inversely proportional toS. Thus, if all
clouds indeed had a diameter of aroundS then we would
expect the trapped fraction to quickly approach the asymp-
totic value of the cloud cover forx≫ S.

In reality the clouds span a wide range of scales, and the
presence of very large clouds reduces the trapped fraction
for largerx. Another way of looking at this is to recog-
nize that since clouds are fractal, theeffectiveperimeter
length,L̂ab, ought to be a power-law function of the length
scale at which the cloud field is being probed. This is usu-
ally written asL̂ab ∝ x1−D, whereD is the fractal dimen-
sion. Many studies have estimated the fractal dimension
of clouds, withD = 1.5 being a reasonable representa-
tive value (e.g. Cahalan and Joseph 1989; Gotoh and Fujii
1998; Wood and Field 2011), implyinĝLab ∝ x−1/2.

The dashed gray lines in Fig. 5e–5h show the result of
making effective perimeter length depend onx in this way,
with the formula leading to the best fit given by

L̂ab = Lab×min
(

1,
√

0.4S/x
)

. (30)

This formula caps the effective perimeter lengthL̂ab to be
no larger than the measured valueLab for x < 0.4S. The
much better agreement with the curves computed from ac-
tual cloud fields gives us confidence that this formula is ap-
propriate to use in computing entrapment within SPARTA-
CUS. Note that we have not found it necessary to use (30)
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FIG. 5. Evaluation of the part of the algorithm that computes thefraction of radiation “trapped” due to horizontal transport. (a–d) Binary cloud
masks obtained by applying a visible-optical-depth threshold to four GEM scenes. (e–h) The corresponding fraction of downwelling clear-sky
radiation that is trapped beneath a cloud as a function of themean horizontal distance traveled,x; the black line shows the result of a Gaussian
smoothing of the cloud masks (treated as truth), while the gray lines show two candidate methods for SPARTACUS that take as input the cloud
scaleS(indicated above each of the lower panels) and cloud cover.
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FIG. 6. Illustration of two model cloud configurations with the same
cloud fraction and overlap parameter: (a) the configurationthat max-
imizes the number of “overhangs” where explicit entrapmentmust be
calculated (shown by the dashed vertical lines with curved arrows across
them), and (b) the configuration that minimizes the number ofover-
hangs. In SPARTACUS this is controlled by theζ factor shown above
each panel.

also for computing lateral exchange across cloud bound-
aries, because the relevant length scale would be the hor-
izontal distance traveled by radiation as it passes through
an individual model layer, which is much less thanx.

c. Treatment of overhanging clouds

Applying these findings in SPARTACUS presents one
further issue to resolve, since as shown in Fig. 3b we are

not dealing with radiative exchange between regions, but
exchange between the “subregions” of regionj in layer
i, defined according to the regions above them in layer
i −1. Unfortunately the perimeter length of the interface
between these subregions is not completely defined by the
variables available to SPARTACUS. Consider the case of
two layers, each with a cloud fraction of 0.5, an overlap
parameter ofαi−1/2 = 0.5 (i.e. halfway between maxi-
mum and random overlap) such that the combined cloud
cover of the two layers is 0.625, and a particular value for
the effective normalized cloud perimeter length in the top
layer L̂ab

i−1. Figure 6a depicts the way in which the clouds
could be configured that maximizes the perimeter length
between the subregions of regiona in layeri, which in this
2D diagram is illustrated by the number of overhanging
clouds shown by the dashed lines.

Figure 6b depicts an alternative configuration at the
other extreme: in the left half of the gridbox the clouds
are overlapped maximally and in the right half they are
overlapped randomly. Since the overhangs are only asso-
ciated with the randomly overlapped half of the gridbox,
there are fewer overhangs. This treatment of cloud overlap
was explored by Shonk et al. (2010), who showed that the
area of the gridbox associated with maximum overlap of
region j could be written asαi−1/2×min(c j

i−1,c
j
i ). We are

concerned with removing the fraction of regionj in layer
i that is maximally overlapped, so divide through byc j

i to
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obtain the fraction of regionj that is randomly overlapped:

C j
i−1/2 = 1−αi−1/2×min(c j

i−1,c
j
i )/c j

i (31)

Thus the most overhangs (Fig. 6a) is obtained by using
L̂kl

i−1 for the effective perimeter length between regionsk
andl , while the fewest overhangs (Fig. 6b) is obtained by
using L̂kl

i−1 ×C j
i−1/2. There is no theoretical or observa-

tional evidence to support which is the most likely, so we
introduce a user-defined “overhang factor”ζ that varies
the effective perimeter length linearly between most over-
hangs (ζ = 1) and fewest overhangs (ζ = 0). This factor is
left as a parameter to be determined in section 6 according
to which leads to SPARTACUS predicting 3D radiative ef-
fects most accurately. It turns out that this property is of
second-order importance compared to whether entrapment
is treated at all.

6. Results

In this section we evaluate the shortwave 3D radia-
tive effect predicted by the new SPARTACUS implemen-
tation in the ecRad radiation scheme (Hogan and Bozzo
2018), and investigate the impact of various different treat-
ments of entrapment. We have used 65 scenes generated
from simulations by Environment and Climate Change
Canada’s Global Environmental Multiscale model (GEM,
Girard et al. 2014), using the configuration described by
Leroyer et al. (2014) with the Milbrandt et al. (2005)
double-moment bulk microphysics cloud scheme.

Each scene measures 100×100 km, has a horizontal res-
olution of 250 m and employs 56 vertical layers. The sim-
ulations were originally performed to generate synthetic
satellite data from two swaths: an Atlantic swath on 7 De-
cember 2014 from Greenland to the Dominican Republic,
from which 39 scenes were extracted, and a Pacific swath
on 24 June 2015 from Hawaii to Tonga, from which a fur-
ther 26 scenes have been extracted. Thus the scenes span
a wide range of cloud conditions.

Both ICA and 3D Monte Carlo shortwave radiative
transfer calculations have been performed on these scenes
using the model of Barker et al. (2003), which tracks pho-
tons through sequences of scattering events until they are
either absorbed by a particle, molecule, or the surface, or
exit the domain’s top. Calculations were performed for
solar zenith angles at 5◦ intervals between 0◦ and 85◦, but
with random solar azimuth angle, and assuming a periodic
domain. The Rapid Radiative Transfer Model for GCMs
(RRTM-G) of Iacono et al. (2008) was used to represent
gas absorption, the Yi et al. (2013) scheme for ice opti-
cal properties and Mie theory for liquid droplets. Scatter-
ing by air molecules and cloud particles were handled by
the Rayleigh and Henyey-Greenstein phase functions, re-
spectively. To simplify the comparison with 1D radiation
schemes, all calculations assumed a Lambertian surface
with an albedo of 0.05.

We first compare the TOA cloud radiative effect be-
tween Monte Carlo calculations run in an ICA mode
(Monte Carlo ICA) and Tripleclouds (the SPARTACUS
control) for the same scenes, i.e. in the absence of 3D ra-
diative transfer. In addition to cloud fraction and gridbox-
mean liquid and ice mixing ratio, Tripleclouds takes as
input the overlap parameter at each half-level and the
fractional standard deviation of in-cloud water content,
FSD, in each layer. It was found that the original imple-
mentation of Tripleclouds was not capable of accurately
representing the effect of horizontal heterogeneities for
FSD> 1.5, which occurs in many of these scenes. Ap-
pendix A describes an improvement to Tripleclouds and
SPARTACUS that has overcome this problem. Figures
7a–7c reveal that the resulting root-mean-squared error in
CRE predicted by Tripleclouds is around 10% and its bias
is only 1–2%.

The differences between 3D and ICA Monte Carlo cal-
culations of CRE for the 65 scenes are summarized by the
black box-and-whisker plots in Figs. 8a and 8b, and the
mean by the thick black line. We see that forθ0 in the
range 0–75◦, 3D effects increase both TOA and surface
CRE (i.e. make them less negative), and therefore act in
the sense of warming the Earth system by making clouds
less reflective. In individual cases, 3D effects can act to
cool the Earth system by up to 7 W m−2 at θ0 = 75◦, via
interception of direct solar radiation by cloud sides, but
plenty of other scenes have a warming effect even for large
θ0.

The various SPARTACUS simulations, which all use
Tripleclouds as their 1D control, enable us to elucidate
the role of entrapment in explaining this behavior. SPAR-
TACUS has been run taking as input the observed cloud
perimeter length in each layer,Lab, and the length of the
contour separating the optically thinner and thicker parts
of the in-cloud extinction distribution,Lbc. In practice the
former is characterized by the cloud effective scale defined
by (29), and the latter by a cloud heterogeneity scale,Shet,
given analogously by

Lbc = 4cc(1−cc)/Shet. (32)

The blue lines in Figs. 8a and 8b show the zero-
entrapment scenario, which was illustrated in Fig. 1a. The
3D effect is much weaker overall; at TOA, the greatest
mean cooling is 1.9 W m−2 at θ0 = 75◦, and the great-
est mean warming is 1.7 W m−2 at θ0 = 0◦. This gen-
eral pattern can be explained by the mechanisms of short-
wave side illumination and downward escape discussed by
Hogan and Shonk (2013), but downward escape is clearly
too weak a mechanism to explain the strong 3D effect
found in the Monte Carlo simulations for overhead sun.
At the other extreme, the green lines show the maximum
entrapment scenario, which was illustrated in Fig. 1c and
involves complete horizontal homogenization of radiation
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FIG. 7. (a–c) Comparison of top-of-atmosphere shortwave cloudradiative effect (CRE) between reference Independent Column Approximation
(ICA) calculations using the Monte Carlo (MC) model on the horizontal axis, and Tripleclouds (the SPARTACUS control) onthe vertical axis, for
each of the 65 GEM scenes at three different solar zenith angles indicated above the panels. (d–f) Corresponding comparison of the 3D radiative
effect, i.e. the difference in CRE between 3D and 1D calculations. The SPARTACUS calculations use explicit entrapment with an overhang factor
of ζ = 0, also shown by the red lines in Fig. 8. Each panel also statesthe mean of the MC calculations, and the bias and root-mean-squared error
(RMSE) of the SPARTACUS/Tripleclouds calculations with respect to MC.
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(c) atmospheric absorption. The thick black and red lines show the average of the 65 GEM scenes for the Monte Carlo model and SPARTACUS in
its preferred configuration of explicit entrapment withζ = 0. The box plots represent the corresponding median and interquartile range of the 65
scenes, with the whiskers representing the 5th and 95th percentiles. The other thick lines show averages of different SPARTACUS configurations.
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in each clear or cloudy region. This has a strong warm-
ing effect, reaching 19.6 W m−2 at TOA for overhead sun,
but is over twice as strong as the reference Monte Carlo
calculations.

The other two SPARTACUS simulations in Figs. 8a and
8b are much closer to the reference calculations: the red
and pink lines show results using explicit entrapment de-
scribed in sections 4 and 5, with the two treatments of
cloud overhangs illustrated in Fig. 6. It is clear that the
least-overhang scenario (ζ = 0) agrees with the Monte
Carlo calculations best at TOA; there is still a slight over-
estimate of the warming effect of 3D radiative transfer,
but it is less than 8% forθ0 ≤ 55◦. Therefore,ζ = 0 is our
preferred SPARTACUS configuration for the remainder of
the paper. Figures 7d–7f compare individual 3D radiative
effects between Monte Carlo and this SPARTACUS con-
figuration, and while there is some scatter, the correlation
coefficients of 0.79–0.86 confirm that there is skill in pre-
dicting 3D effects for individual cases.

Figure 8c shows the change to total atmospheric absorp-
tion when 3D effects are included. The Monte Carlo calcu-
lations show an increase in absorption by around 1 W m−2

at most solar zenith angles, which is comparable to the
findings of Barker et al. (2016). Both the main 3D mech-
anisms contribute to this effect: side illumination at large
solar zenith angle enhances the interception and hence ab-
sorption by clouds, while Fig. 3b shows that entrapment
increases the path length of radiation in clear skies be-
neath cloud, enhancing water-vapor absorption. SPARTA-
CUS with explicit entrapment leads to around 2 W m−2

greater atmospheric absorption than Tripleclouds, on av-
erage, which is twice the 3D effect in the Monte Carlo
simulations. This is related to the presence of a handful
of outliers amongst the SPARTACUS simulations (shown
by red dots in Fig. 8c); indeed, if we were to look at the
median rather than the mean of the 65 cases then it would
suggest instead that SPARTACUS tends to underestimate
the 3D effect on atmospheric absorption.

To investigate the factors that influence the nature of 3D
radiative transfer in individual cases, and the fidelity with
which they are captured by SPARTACUS, we analyze the
radiation fields for the four contrasting GEM scenes de-
picted in Fig. 9. Vertical profiles of the four main inputs to
SPARTACUS are shown in Figs. 10a–10d. Atlantic case
6 consists of cumulus clouds with some vertical develop-
ment; the small effective cloud scale ofS≃ 1 km, and
hence large cloud-side area, leads to significant shortwave
side illumination, with Fig. 10e showing a 7 W m−2 in-
crease in the reflectance of the scene atθ0= 75◦ (a cooling
effect). The dependence onθ0 is well captured by SPAR-
TACUS, including the change in sign to a 7 W m−2 warm-
ing atθ0 = 0◦, or a−9% change to CRE (see the caption
of Fig. 10 for the total CRE values for overhead sun), but
the similarity between the various entrapment configura-

tions highlights that in this case the 3D effect for high sun
is mainly due to downward escape.

The three remaining scenes, by contrast, appear to be
dominated by entrapment. Atlantic case 14 contains deep
frontal cloud with considerable small-scale structure. The
zero-entrapment simulation in Fig. 10f shows the signif-
icant cooling effect of side illumination, but the explicit-
entrapment simulation shows that this is overwhelmed by
entrapment and indeed the net warming by 3D effects is
up to 39 W m−2 (a −8% change to CRE). A key factor
is the large vertical extent of the cloud, which means that
radiation passing down through the gaps in the clouds can
travel a large distance horizontally before being reflected
back up to its original level, increasing the trapping. At-
lantic case 32 contains much more homogeneous and over-
cast boundary-layer cloud. The zero-entrapment simula-
tion has a 3D radiative effect of less than 1 W m−2, con-
firming that cloud-side effects are weak. With entrapment
included, the 3D effect is a warming of up to 6–7 W m−2,
with good agreement between SPARTACUS and Monte
Carlo. In absolute terms this effect is significant, but this
scene is the most reflective of the four and in relative terms
it is only a−1% change to CRE. Additional Tripleclouds
and SPARTACUS calculations in which the in-cloud het-
erogeneity is removed (i.e. setting FSD= 0) lead to the
3D effect almost entirely disappearing, which suggest that
it is due to trapping associated with cloud heterogeneity,
similar to one of the mechanisms proposed by Várnai and
Davies (1999). Finally, Pacific case 25 consists of rem-
nants of deep convection including anvils withS≃ 10 km.
Again the entrapment mechanism appears to dominate.

7. Conclusions

Cloud scenes have varied and complex structures, and
consequently it can be very challenging to understand the
magnitude and even sign of the differences between radi-
ation calculations with and without horizontal transport.
The simplest mechanism to understand shortwave 3D ra-
diative transfer is side illumination, which enhances cloud
reflectance. This has led many previous studies to focus
on cloud types with a relatively large cloud-side area such
as cumulus (Benner and Evans 2001; Pincus et al. 2005)
and aircraft contrails (Gounou and Hogan 2007). How-
ever, Barker et al. (2015) analyzed a much more varied and
representative set of cloud fields and found that shortwave
3D transport tends to reduce the reflectance of clouds over-
all and hence has a warming effect on the Earth system. In
this paper we propose the mechanism of “entrapment” to
explain this behavior. Entrapment is similar to one of the
mechanisms suggested by Várnai and Davies (1999) for
single-layer cloud scenes, but an important insight is that
it need not involve transport through cloud sides. It tends
to be strongest in deep, multilayer scenes, which are com-
mon in reality but have tended to be ignored in previous
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FIG. 9. Three-dimensional visualizations of four contrastingGEM scenes, where the grid axes are marked in kilometers. Theresults of 3D radiation
calculations on these scenes are shown in Fig. 10.
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FIG. 10. (a–d) The four main cloud geometry parameters used by SPARTACUS for the four GEM scenes shown in Fig. 9, where cloud fraction in
gray varies between 0 and 1 across the horizontal axis, and the cloud and heterogeneity scales are defined by (29) and (32).(e–h) The corresponding
calculations of the difference in top-of-atmosphere shortwave cloud radiative effect (CRE) between 3D and 1D calculations, where the black lines
show Monte Carlo results and the colored lines show various configurations of SPARTACUS. For reference, the overhead-sun CRE for the four
scenes according to the 3D Monte Carlo model was−79,−476,−832 and−184 W m−2, respectively.

case studies, presumably due to them being regarded as

too complex to interpret.

We have described modifications to the shortwave

SPARTACUS solver of Hogan et al. (2016) to incorporate
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an explicit calculation of entrapment, making use of the
effective cloud scale variable already provided as input to
SPARTACUS. This involves a novel method to estimate
the mean horizontal distance traveled by reflected radia-
tion, something that could be useful in other contexts, for
example in determining when the radiation scheme of a
cloud-resolving model ought to represent lateral exchange
of radiation between gridboxes. We have also found it
necessary to explicitly represent the fractal dimension of
cloud perimeters.

Evaluation against Monte Carlo calculations on 65 con-
trasting scenes from a cloud-resolving model reveals the
new SPARTACUS scheme to be capable of predicting
the “3D effect”, i.e. the difference between cloud radia-
tive effect computed with and without horizontal radiative
transport, with a TOA bias of no more than 0.3 W m−2

for all solar zenith angles, and skill in predicting the de-
pendence of the 3D effect on solar zenith angle in indi-
vidual scenes. On average, 3D radiative effects tend to
make these scenes less reflective (similar to the findings of
Barker et al. 2015), implying that entrapment is a more im-
portant mechanism than side illumination. However, this
result is highly dependent on the realism of the clouds sim-
ulated by the cloud-resolving model; if real clouds were
smaller, on average, than those used here then the side-
illumination mechanism would be relatively more impor-
tant.

The modified SPARTACUS is now an option in the
ecRad radiation scheme (Hogan and Bozzo 2018) used in
the ECMWF model. Hogan and Bozzo (2018) reported
the original SPARTACUS with maximum entrapment to
be 3.5 times slower than Tripleclouds, and we find that ex-
plicit entrapment increases this to around 4.5. While too
costly to use operationally, it is fast enough to use for re-
search purposes. The next step will be to use this validated
tool to estimate the global impact of 3D radiative transfer,
not just in the shortwave but also in the longwave (Schäfer
et al. 2016).

Acknowledgments

We thank Zhipeng Qu for performing the GEM model
simulations. NV acknowledges support from the Agence
Nationale de la Recherche (grant ANR-16-CE01-0010),
and from the French Ministry of Higher Education, Re-
search and Innovation through the doctoral school SDU2E
of Université de Toulouse.

Appendix A: Improving Tripleclouds for very hetero-
geneous scenes

SPARTACUS can be thought of as a 3D extension of the
1D Tripleclouds solver of Shonk and Hogan (2008), so
before evaluating SPARTACUS against 3D Monte Carlo
calculations we need to be sure that Tripleclouds agrees
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FIG. 11. Albedo bias of the Tripleclouds method for a gamma distri-
bution of cloud optical depths with increasing fractional standard devi-
ation indicated on the vertical axis: (a) equal-area cloudyregions with
the optical depth of the first cloudy region given by the 16th percentile
of the gamma distribution; (b) new method in which the area ofthe two
cloudy regions can be different. Following Shonk and Hogan (2008),
this analysis approximates the relationship between albedo, α , and op-
tical depth,δ , asα = 0.2+0.525δ/(δ +3.5).

well with the corresponding ICA calculations. Triple-
clouds takes as input a profile of “fractional standard devi-
ation” (FSD), which is the standard deviation of in-cloud
water content or extinction coefficient divided by the in-
cloud mean value. Tripleclouds divides the cloud in each
layer into two regions (denotedb andc) of different extinc-
tion coefficient. Shonk and Hogan (2008) reported that
for FSD up to 2, predicted irradiances agreed best with
ICA if the two cloudy regions had equal area, regionb
used the 16th percentile of the full extinction distribution,
and the extinction of regionc was chosen so as to con-
serve the layer-mean extinction. The implementation of
Tripleclouds in ecRad (Hogan and Bozzo 2018) includes
the option to represent either a lognormal distribution of
optical depth, in which case the ratio of the 16th per-
centile to the in-cloud mean is given approximately by Eq.
44 of Hogan et al. (2016), or a gamma distribution (e.g.
Barker et al. 1996) for which this ratio is approximated by

rb = exp
(

−FSD−FSD2/2−FSD3/4
)

. (33)

Conservation of mean extinction coefficient requires the
ratio of the extinction of regionc to the in-cloud mean to
berc = 2− rb.

Comparison of Tripleclouds to ICA calculations on the
scenes described in section 6 revealed the gamma distribu-
tion to perform best, but even then Tripleclouds tended to
overestimate scene reflectance for the more heterogeneous
scenes, some of which have FSD values up to 4. In Fig.
11a we have repeated the analysis of Shonk and Hogan
(2008) but for a gamma rather than a lognormal distribu-
tion, and considered larger values of FSD. A substantial
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albedo overestimate is apparent for FSD> 2. The prob-
lem arises because for large FSD,rb tends to 0 andrc to
2. Since the two cloudy regions have equal area, the ac-
tual fractional standard deviation of the Tripleclouds rep-
resentation of the in-cloud extinction distribution tendsto
1, which may be much less than the FSD of the gamma
distribution being approximated.

The solution we propose to overcome this problem is
twofold. First, a newrb is defined with a lower limit of
0.025:

rb
new= 0.975rb+0.025. (34)

Second, for large values of FSD we increase the fractional
area of regionb and correspondingly reduce that of region
c: for FSD in the range 1.5–3.75, the fraction of the cloudy
area occupied by regionb increases linearly from 0.5 to
0.9, while outside this range it is capped at 0.5 or 0.9. The
extinction of regionc is still chosen to conserve the layer-
mean value. Figure 11b shows that these changes virtually
eliminate the albedo bias up to an FSD of 4. This solu-
tion has been implemented in both the Tripleclouds and
SPARTACUS solvers of ecRad, and is used in section 6.

Appendix B: List of symbols

The following list includes symbols used in more than
one equation in sections 3–5, and “PP” indicates a vari-
able from section 4a where a plane-parallel atmosphere
has been assumed.

Aabovei−1/2 diffuse albedo of entire atmosphere and sur-
face below interfacei −1/2, with matrix el-
ements configured for regions in the layer
abovethe interface (regioni−1)

Ai−1/2 diffuse albedo of entire atmosphere and sur-
face below interfacei−1/2 (PP)

ck fraction of layer occupied by regionk

Dabovei−1/2 asAabovei−1/2 but for direct radiation

Di−1/2 direct albedo of entire atmosphere and sur-
face below interfacei−1/2 (PP)

Ei fraction of direct radiation penetrating layer
i without being scattered (PP)

f kl rate at which radiation passes from subre-
gion k to l , per unit increase in horizontal
distance traveled

Lkl length of interface between regionsk and l
normalized by the area of the domain

L̂kl effective normalized interface length, ac-
counting for the fractal nature of clouds

L j
i−1/2 matrix expressing how much radiation enter-

ing region j of layer i from the top and sub-
sequently reflected back up, is exchanged
between the various regions in layeri−1

Ri diffuse reflectance of layeri (PP)

s vector of downwelling direct irradiances in
each region at a particular height

S−i reflectance of layeri to direct radiation (PP)

S+i fraction of direct radiation that penetrates
layer i and is scattered on the way (PP)

S, Shet effective cloud scale; cloud heterogeneity
scale

Ti transmittance of layeri to diffuse radiation
(PP)

u vector of upwelling irradiances in each re-
gion at a particular height

Ui−1/2 upward overlap matrix expressing how up-
welling irradiances in each region just below
interfacei −1/2 are transported into the re-
gions just above

v vector of downwelling diffuse irradiances in
each region at a particular height

V i−1/2 downward overlap matrix expressing how
downwelling irradiances in each region just
above interfacei −1/2 are transported into
the regions just below

w j
i−1/2 vector expressing the fraction of radiation in

region j of layeri that is beneath each region
of layer i−1

xi−1/2 mean horizontal distance traveled by re-
flected diffuse radiation below interfacei −
1/2 (PP)

x̂i mean horizontal distance traveled by diffuse
radiation reflected by layeri (PP)

yi−1/2 mean horizontal distance traveled by re-
flected direct radiation below interfacei −
1/2 (PP)

ŷi mean horizontal distance traveled by direct
radiation reflected by layeri (PP)

ΓΓΓ matrix expressing the rates of radiation ex-
change between the subregions of a region

∆xi horizontal distance traveled by diffuse radi-
ation passing through layeri

∆yi horizontal distance traveled by direct radia-
tion passing through layeri

∆zi thickness of layeri

ζ overhang factor

θ0 solar zenith angle
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