13 research outputs found

    Validation of a new 60 MeV proton beam-line for radiation hardness testing

    Full text link
    A 60 MeV proton beam-line has been developed in Nice, France, in collaboration with the Centre National d'Etudes Spatiales (CNES). Experimental results are presented here to validate the beam-line for radiation hardness testing.Comment: RADECS conference 202

    Development of integration mode proton imaging with a single CMOS detector for a small animal irradiation platform

    Get PDF
    A novel irradiation platform for preclinical proton therapy studies foresees proton imaging for accurate setup and treatment planning. Imaging at modern synchrocyclotron-based proton therapy centers with high instantaneous particle flux is possible with an integration mode setup. The aim of this work is to determine an object’s water-equivalent thickness (WET) with a commercially available large-area CMOS sensor. Image contrast is achieved by recording the proton energy deposition in detector pixels for several incoming beam energies (here, called probing energies) and applying a signal decomposition method that retrieves the water-equivalent thickness. A single planar 114 mm × 65 mm CMOS sensor (49.5 µm pixel pitch) was used for this study, aimed at small-animal imaging. In experimental campaigns, at two isochronous cyclotron-based facilities, probing energies suitable for small-animal-sized objects were produced once with built-in energy layer switching and the other time, using a custom degrader wheel. To assess water-equivalent thickness accuracy, a micro-CT calibration phantom with 10 inserts of tissue-mimicking materials was imaged at three phantom-to-detector distances: 3 mm, 13 mm, and 33 mm. For 3 mm and 13 mm phantom-to-detector distance, the average water-equivalent thickness error compared to the ground truth was about 1 and the spatial resolution was 0.16(3) mm and 0.47(2) mm, respectively. For the largest separation distance of 33 mm air gap, proton scattering had considerable impact and the water-equivalent thickness relative error increased to 30, and the spatial resolution was larger than 1.75 mm. We conclude that a pixelated CMOS detector with dedicated post-processing methods can enable fast proton radiographic imaging in a simple and compact setup for small-animal-sized objects with high water-equivalent thickness accuracy and spatial resolution for reasonable phantom-to-detector distances

    A New Measurement of Low Energy Antiprotons In the Cosmic Radiation

    No full text
    New measurements of the antiproton flux and the antiproton-to-proton flux ratio at the top of the atmosphere between 80 MeV and 2.0 GeV are presented. The measurement was conducted from July 2006 to March 2008 with the PAMELA satellite experiment. This is a period of minimum solar activity and negative solar polarity and the PAMELA measurement is the first observation of antiprotons during this particular solar state. The PAMELA instrument comprises a permanent magnet spectrometer, a scintillator based time-of-flight system, an electromagnetic calorimeter and an anticoincidence shield. These detectors can identify antiprotons from a background of cosmic-ray electrons and locally produced pions. The PAMELA instrument is mounted on the Resurs DK1 satellite that was launched from the Baikonur Cosmodrome on June the 15th into a semi-polar orbit with an inclination of 70o. During approximately 500 days of data collection 170 antiprotons were identified. The derived antiproton spectrum shows a steep increase up to 2 GeV as expected for pure secondary production of galactic antiprotons. The antiproton flux is over-estimated by most current models of secondary production compared to PAMELA results. There are no indications of the excess of antiprotons at low energy predicted by theories of primordial black hole evaporation. The antiproton-to-proton flux ratio is in agreement with drift models of solar modulation, which are also favoured by recent PAMELA measurements of the positron fraction.QC 2010081

    Imaging the high energy cosmic ray sky

    No full text
    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server. Air shower data can be visualised in real-time using a Java-applet client. The design and performance of the first three detector stations located at the AlbaNova University Centre are presented. The detectors have been running since the beginning of October 2005 and the data from this period is analysed to assess the stability and performance of the detector array. A total of 503 showers with a primary particle energy above 1016 eV, hitting all three detector stations simultaneously, have been detected during this period. The read out and data-base system used to collect the data are described together with a quicklook tool for ensuring the integrity of the data. A preliminary study of the acceptance of the detector array as a function of weather conditions, to be used in future studies of cosmic ray anisotropy, is presented. The acceptance of the single detector stations is found to decrease with increasing atmospheric pressure and to stay constant over a large range of temperatures. The acceptance of the entire array of detector stations is found to have a stronger continuous dependence on temperature than single stations. The dependence of the array acceptance on pressure is inconclusive. The ability of the array to reconstruct the primary cosmic ray direction is assessed with simulations. A critical feature for the reconstruction is the time resolution of the system. The performance of the GPS system is therefore tested, and the time resolution is found to be better than 15 ns for all tested GPS units. The angular resolution of the array for this time resolution is found to be (7.0\pm0.3)^{\circ}. As the time resolution is expected to decrease for a larger array of detectors, the dependency of the time resolution on the angular resolution is derived. The measured distribution of the primary cosmic ray arrival direction is derived and compared to the expected distribution to check the performance of the system. The agreement between the distributions is good and the GPS timing system can therefore be concluded to work well. The simulations also show that the energy threshold of the array is slightly above 1016 eV. A preliminary study of the cosmic ray anisotropy is presented. The hypothesis of an isotropic flux of cosmic rays was tested using a two point correlation function. The probability that the observed flux is a random sampling from an isotropic flux was checked with a Kolmogorov test and it was found to be 82%. The hypothesis of an isotropic flux is therefore supported.QC 2010111
    corecore