1,054 research outputs found

    Quantum tunneling induced Kondo effect in single molecular magnets

    Full text link
    We consider transport through a single-molecule magnet strongly coupled to metallic electrodes. We demonstrate that for half-integer spin of the molecule electron- and spin-tunneling \emph{cooperate} to produce both quantum tunneling of the magnetic moment and a Kondo effect in the linear conductance. The Kondo temperature depends sensitively on the ratio of the transverse and easy-axis anisotropies in a non-monotonic way. The magnetic symmetry of the transverse anisotropy imposes a selection rule on the total spin for the occurrence of the Kondo effect which deviates from the usual even-odd alternation.Comment: 4 pages, 4 figure

    Kondo-transport spectroscopy of single molecule magnets

    Full text link
    We demonstrate that in a single molecule magnet (SMM) strongly coupled to electrodes the Kondo effect involves all magnetic excitations. This Kondo effect is induced by the quantum tunneling of the magnetic moment (QTM). Importantly, the Kondo temperature TKT_K can be much larger than the magnetic splittings. We find a strong modulation of the Kondo effect as function of the transverse anisotropy parameter or a longitudinal magnetic field. For both integer and half-integer spin this can be used for an accurate transport spectroscopy of the magnetic states in low magnetic fields on the order of the easy-axis anisotropy parameter. We set up a relationship between the Kondo effects for successive integer and half-integer spins.Comment: 5 pages, 3 figure

    Nonequilibrium Spin Dynamics in the Ferromagnetic Kondo Model

    Full text link
    Motivated by recent experiments on molecular quantum dots we investigate the relaxation of pure spin states when coupled to metallic leads. Under suitable conditions these systems are well described by a ferromagnetic Kondo model. Using two recently developed theoretical approaches, the time-dependent numerical renormalization group and an extended ow equation method, we calculate the real-time evolution of a Kondo spin into its partially screened steady state. We obtain exact analytical results which agree well with numerical implementations of both methods. Analytical expressions for the steady state magnetization and the dependence of the long-time relaxation on microscopic parameters are established. We find the long-time relaxation process to be much faster in the regime of anisotropic Kondo couplings. The steady state magnetization is found to deviate significantly from its thermal equilibrium value.Comment: 4 pages, 3 figures, final version as accepted by Physical Review Letter

    Stall- und weidebasierte Milchproduktionssysteme Analysen zur Lebensmittelkonversionseffizienz

    Get PDF
    Reducing the amount of human-edible feed in livestock diets is a key factor towards more sustainable livestock systems. Based on results from a conventional wholesystem study comparing performance, efficiency, land productivity, and profitability of an indoor-feeding system (SH) and a pasture-based dairy production system (VW) in lowlands of Central Switzerland, the net contribution of these systems to human food protein and energy supply was analysed. Depending on the presumed human-edible fraction, the system VW produced between 6.6 and 11.2 times more human-edible protein and 3.5 to 6.6 times more human-edible energy via animal products than the animals consumed via feeds. For the group SH, these factors were clearly lower but still in a positive range (1.0 to 2.5 and 0.9 and 1.9 for protein and energy respectively). In addition, protein quality in the animal products was considerable higher than protein quality in the potentially human-edible feed components

    Magnetism and domain formation in SU(3)-symmetric multi-species Fermi mixtures

    Get PDF
    We study the phase diagram of an SU(3)-symmetric mixture of three-component ultracold fermions with attractive interactions in an optical lattice, including the additional effect on the mixture of an effective three-body constraint induced by three-body losses. We address the properties of the system in D≥2D \geq 2 by using dynamical mean-field theory and variational Monte Carlo techniques. The phase diagram of the model shows a strong interplay between magnetism and superfluidity. In the absence of the three-body constraint (no losses), the system undergoes a phase transition from a color superfluid phase to a trionic phase, which shows additional particle density modulations at half-filling. Away from the particle-hole symmetric point the color superfluid phase is always spontaneously magnetized, leading to the formation of different color superfluid domains in systems where the total number of particles of each species is conserved. This can be seen as the SU(3) symmetric realization of a more general tendency to phase-separation in three-component Fermi mixtures. The three-body constraint strongly disfavors the trionic phase, stabilizing a (fully magnetized) color superfluid also at strong coupling. With increasing temperature we observe a transition to a non-magnetized SU(3) Fermi liquid phase.Comment: 36 pages, 17 figures; Corrected typo

    Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference

    Full text link
    Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.Comment: 6 figure

    Stall- und weidebasierte Milchproduktionssysteme Modellbetriebsanalysen zur Wirtschaftlichkeit unter österreichischen Produktionsbedingungen

    Get PDF
    In a whole-system study in lowland of Central Switzerland from 2007 - 2010 compared the performance, efficiency, land productivity and profitability of indoor-feeding (SH) dairy production with that of pasture-based feeding (VW) dairy production. In the present study these experimental results were economically evaluated under Austrian market und production conditions. Therefore conventional and organic model farms were created and analyzed using full cost accounting. In comparison to the barn feeding strategy a higher farm income, income per labor unit were achieved with the pasture-based feeding strategy. These economic differences were more pronounced under organic than conventional conditions

    Level spacings at the metal-insulator transition in the Anderson Hamiltonians and multifractal random matrix ensembles

    Full text link
    We consider orthogonal, unitary, and symplectic ensembles of random matrices with (1/a)(ln x)^2 potentials, which obey spectral statistics different from the Wigner-Dyson and are argued to have multifractal eigenstates. If the coefficient aa is small, spectral correlations in the bulk are universally governed by a translationally invariant, one-parameter generalization of the sine kernel. We provide analytic expressions for the level spacing distribution functions of this kernel, which are hybrids of the Wigner-Dyson and Poisson distributions. By tuning the single parameter, our results can be excellently fitted to the numerical data for three symmetry classes of the three-dimensional Anderson Hamiltonians at the metal-insulator transition, previously measured by several groups using exact diagonalization.Comment: 12 pages, 8 figures, REVTeX. Additional figure and text on the level number variance, to appear in Phys.Rev.

    Kondo effect and spin-active scattering in ferromagnet-superconductor junctions

    Full text link
    We study the interplay of superconducting and ferromagnetic correlations on charge transport in different geometries with a focus on both a quantum point contact as well as a quantum dot in the even and the odd state with and without spin-active scattering at the interface. In order to obtain a complete picture of the charge transport we calculate the full counting statistics in all cases and compare the results with experimental data. We show that spin-active scattering is an essential ingredient in the description of quantum point contacts. This holds also for quantum dots in an even charge state whereas it is strongly suppressed in a typical Kondo situation. We explain this feature by the strong asymmetry of the hybridisations with the quantum dot and show how Kondo peak splitting in a magnetic field can be used for spin filtering. For the quantum dot in the even state spin-active scattering allows for an explanation of the experimentally observed mini-gap feature.Comment: 14 pages, 7 figures, accepted by PR
    • …
    corecore