We study the interplay of superconducting and ferromagnetic correlations on
charge transport in different geometries with a focus on both a quantum point
contact as well as a quantum dot in the even and the odd state with and without
spin-active scattering at the interface. In order to obtain a complete picture
of the charge transport we calculate the full counting statistics in all cases
and compare the results with experimental data. We show that spin-active
scattering is an essential ingredient in the description of quantum point
contacts. This holds also for quantum dots in an even charge state whereas it
is strongly suppressed in a typical Kondo situation. We explain this feature by
the strong asymmetry of the hybridisations with the quantum dot and show how
Kondo peak splitting in a magnetic field can be used for spin filtering. For
the quantum dot in the even state spin-active scattering allows for an
explanation of the experimentally observed mini-gap feature.Comment: 14 pages, 7 figures, accepted by PR