147 research outputs found

    Immune modulation and prevention of autoimmune disease by repeated sequences from parasites linked to self antigens

    Get PDF
    Parasite proteins containing repeats are essential invasion ligands, important for their ability to evade the host immune system and to induce immunosuppression. Here, the intrinsic suppressive potential of repetitive structures within parasite proteins was exploited to induce immunomodulation in order to establish self-tolerance in an animal model of autoimmune neurological disease. We tested the tolerogenic potential of fusion proteins containing repeat sequences of parasites linked to self-antigens. The fusion constructs consist of a recombinant protein containing repeat sequences derived from the S-antigen protein (SAg) of Plasmodium falciparum linked to a CD4 T cell epitope of myelin. They were tested for their efficacy to control the development of experimental autoimmune encephalomyelitis (EAE), In addition, we used the DO11.10 transgenic mouse model to study the immune mechanisms involved in tolerance induced by SAg fusion proteins. We found that repeated sequences of P. falciparum SAg protein linked to self-epitopes markedly protected mice from EAE. These fusion constructs were powerful tolerizing agents not only in a preventive setting but also in the treatment of ongoing disease. The tolerogenic effect was shown to be antigen-specific and strongly dependent on the physical linkage of the T cell epitope to the parasite structure and on the action of anti-inflammatory cytokines like IL-10 and TGF-{beta}. Other mechanisms include down-regulation of TNF-{alpha} accompanied by increased numbers of FoxP3(+) cells. This study describes the use of repetitive structures from parasites linked to defined T cell epitopes as an effective method to induce antigen-specific tolerance with potential applicability for the treatment and prevention of autoimmune diseases

    Hydrogen a relevant shallow donor in Zinc Oxide

    Get PDF
    Biological and Soft Matter Physic

    A Mild Case of Autosomal Recessive Osteopetrosis Masquerading as the Dominant Form Involving Homozygous Deep Intronic Variations in the CLCN7 Gene

    Get PDF
    Published online: 26 May 2022Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.Jochen G. Hofstaetter, Gerald J. Atkins, Hajime Kato, Masakazu Kogawa, Stéphane Blouin, Barbara M. Misof, Paul Roschger, Andreas Evdokiou, Dongqing Yang, Lucian B. Solomon, David M. Findlay, Nobuaki It

    The diagnosis and management of patients with idiopathic osteolysis

    Get PDF
    Idiopathic osteolysis or disappearing bone disease is a condition characterized by the spontaneous onset of rapid destruction and resorption of a single bone or multiple bones. Disappearing bone disorder is a disease of several diagnostic types. We are presenting three patients with osteolysis who have different underlying pathological features. Detailed phenotypic assessment, radiologic and CT scanning, and histological and genetic testing were the baseline diagnostic tools utilized for diagnosis of each osteolysis syndrome. The first patient was found to have Gorham-Stout syndrome (non-heritable). The complete destruction of pelvic bones associated with aggressive upward extension to adjacent bones (vertebral column and skull base) was notable and skeletal angiomatosis was detected. The second patient showed severe and aggressive non-hereditary multicentric osteolysis with bilateral destruction of the hip bones and the tarsal bones as well as a congenital unilateral solitary kidney and nephropathy. The third patient was phenotypically and genotypically compatible with Winchester syndrome resulting in multicentric osteolysis (autosomal recessive). Proven mutation of the (MMP2-Gen) was detected in this third patient that was associated with 3MCC deficiency (3-Methylcrontonyl CoA Carboxylase deficiency). The correct diagnoses in our 3 patients required the exclusion of malignant osteoclastic tumours, inflammatory disorders of bone, vascular disease, and neurogenic arthropathies using history, physical exam, and appropriate testing and imaging. This review demonstrates how to evaluate and treat these complex and difficult patients. Lastly, we described the various management procedures and treatments utilized for these patients
    corecore