103 research outputs found

    Hyperfine resolved optical spectroscopy of the A<sup>2</sup>Π ←X<sup>2</sup>Σ<sup>+</sup> transition in MgF

    Get PDF
    We report on hyperfine-resolved laser spectroscopy of the A2Π ←X2Σ+ transition of MgF, relevant for laser cooling. We recorded 25 rotational transitions with an absolute accuracy of better than 20 MHz, assigned 56 hyperfine lines and determined precise rotational, fine and hyperfine structure parameters for the A2Π state. The radiative lifetime of the A2Π state was determined to be 7.2(3) ns, in good agreement with \textit{ab initio} calculations. The transition isotope shift between bosonic isotopologues of the molecule is recorded and compared to predicted values within the Born-Oppenheimer approximation. We measured the Stark effect of selected rotational lines of the A2Π ←X2Σ+ transition by applying electric fields of up to 10.6 kV cm-1 and determined the permanent electric dipole moments of 24MgF in its ground X2Σ+ and first excited A2Π states to be μX=2.88(20) D and μA=3.20(22) D, respectively. Based on these measurements, we caution for potential losses from the optical cycling transition, due to electric field induced parity mixing in the excited state. In order to scatter 104 photons, the electric field must be controlled to below 1 V cm-1

    Cryogenic Buffer Gas beams of AlF, CaF, MgF, YbF, Al, Ca, Yb and NO -- a comparison

    Get PDF
    Cryogenic buffer gas beams are central to many cold molecule experiments. Here, we use absorption and fluorescence spectroscopy to directly compare molecular beams of AlF, CaF, MgF, and YbF molecules, produced by chemical reaction of laser ablated atoms with fluorine rich reagents. The beam brightness for AlF is measured as 2 X 1012 molecules per steradian per pulse in a single rotational state, comparable to an Al atomic beam produced in the same setup. The CaF, MgF and YbF beams show an order of magnitude lower brightness than AlF, and far below the brightness of Ca and Yb beams. The addition of either NF3 or SF6 to the cell extinguishes the Al atomic beam, but has a minimal effect on the Ca and Yb beams. NF3 reacts more efficiently than SF6, as a significantly lower flow rate is required to maximise the molecule production, which is particularly beneficial for long-term stability of the AlF beam. We use NO as a proxy for the reactant gas as it can be optically detected. We demonstrate that a cold, rotationally pure NO beam can be generated by laser desorption, thereby gaining insight into the dynamics of the reactant gas inside the buffer gas cell

    Preparation of individual magnetic sub-levels of <sup>4</sup>He(2<sup>3</sup>S<sub>1</sub>) in a supersonic beam using laser optical pumping and magnetic hexapole focusing

    Get PDF
    We compare two different experimental techniques for the magnetic-sub-level preparation of metastable 4He in the 23S1 level in a supersonic beam, namely, magnetic hexapole focusing and optical pumping by laser radiation. At a beam velocity of v = 830 m/s, we deduce from a comparison with a particle trajectory simulation that up to 99% of the metastable atoms are in the MJ″ = +1 sub-level after magnetic hexapole focusing. Using laser optical pumping via the 23P2–23S1 transition, we achieve a maximum efficiency of 94% ± 3% for the population of the MJ″ = +1 sub-level. For the first time, we show that laser optical pumping via the 23P1–23S1 transition can be used to selectively populate each of the three MJ″ sub-levels (MJ″ = −1, 0, +1). We also find that laser optical pumping leads to higher absolute atom numbers in specific MJ″ sub-levels than magnetic hexapole focusing

    Towards quantitative Low Energy Ion Scattering on CaSiO3_3 from Comparison to Multiple-Scattering-Resolved Dynamical Binary Collision Approximation Simulations

    Full text link
    We perform Low Energy Ion Scattering with 1\,keV He ions on CaSiO3_3 using a commercial electrostatic detector system and determine the charge fraction of scattered ions from comparison with Binary Collision Approximation simulations. The simulations take dynamical surface changes due to surface cleaning Ar sputtering into account and scattered He particles are separated into single, dual, and multiple scattering trajectories. We find that the charge fraction of single and dual scattered He is about 10 times higher than the one for multiple collisions. Our results show that quantitative concentration profiles can be inferred from this method, if the charge fraction components are determined first

    Amorphization of ZnSe by ion implantation at low temperatures

    Get PDF
    Radioactive Cd and Se ions were implanted into high-resistivity ZnSe single crystals around 60 K and 300 K. Their lattice sites were determined by measuring the channelling and blocking effects of the emitted conversion electrons or positrons directly after implantation and after annealing at different temperatures up to 600 K. Implantation doses were in the range of 3×1012\times 10^{12} - 3×1013\times10^{13}/cm2^2. The experimental results of this emission channelling technique yield a high substitutional fraction of the implanted ions directly after implantation at room temperature. At 60 K the substitutional fraction of implanted ions is highly sensitive to the ion dose. Above a critical dose of around 1.4×1013\times10^{13} Cd/cm2^2 or 2.1×1013\times10^{13} Se/cm2^2 the substitutional fraction completely disappears indicating an amorphous surrounding of the probe atom. Damage recovery was observed below room temperature and at an annealing temperature around 500 K. A quantitative analysis of measured channelling yields will be given by comparison with calculated electron channelling profiles based on the dynamical theory of electron diffraction

    Lattice sites of ion-implanted Li in diamond

    Get PDF
    Published in: Appl. Phys. Lett. 66 (1995) 2733-2735 citations recorded in [Science Citation Index] Abstract: Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of a-particles emitted in the nuclear decay of 8Li (t1/2 = 838 ms) were measured and, from a comparison with calculated emission channelling and blocking effects from Monte Carlo simulations, the lattice sites taken up by the Li ions were quantitatively determined. A fraction of 40(5)% of the implanted Li ions were found to be located on tetrahedral interstitial lattice sites, and 17(5)% on substitutional sites. The fractions of implanted Li on the two lattice sites showed no change with temperature, indicating that Li diffusion does not take place within the time window of our measurements.

    High-resolution isotope-shift spectroscopy of Cd I

    Get PDF
    We present absolute frequency measurements of the 1P1←1S0 (229nm) and 3P1←1S0 (326nm) transitions for all naturally occurring isotopes of cadmium. The isotope shifts and hyperfine intervals of the fermionic isotopes are determined with an accuracy of 3.3MHz. We find that quantum interference in the laser-induced fluorescence spectra of the 1P1←1S0 transition causes an error of up to 29(5)MHz in determining the hyperfine splitting, when not accounted for with an appropriate model. Using a King-plot analysis, we extract the field- and mass-shift parameters and determine nuclear charge radius differences for the fermions. The lifetime of the 1P1 state is determined to be 1.60(5)ns by measuring the natural linewidth of the 1P1←1S0 transition. These results resolve significant discrepancies among previous measurements

    α\alpha-emission channeling investigations of the lattice location of Li in Ge

    Get PDF
    The α\alpha-emission channeling and blocking technique is a direct method for lattice site determination of radioactive atoms in single crystals. Position-sensitive detection of emitted α\alpha -particles provides an efficient means of carrying out such experiments at very low doses (1010^{10}-1011^{11} implanted probe atoms per spectrum). Comparison of the experimental data to Monte Carlo simulations of complete two-dimensional channeling patterns (e.g. ±2°C around , and axes, which also includes all relevant planar directions) allows for straight-forward identification and rather accurate quantitative determination of occupied lattice sites, while at the same time the energy spectrum of emitted a particles gives information on the probe atom depth distribution. We illustrate this for the case of ion implanted 8^8Li (t_=0.8 s) in Ge, where we identify mainly tetrahedral Li at room temperature, and bond-centered Li at slightly elevated temperature

    Crystal field analysis of Pm3+^{3+} (4f4)andSm^{f4}) and Sm^{3+}(4 (4^{f5}) and lattice location studies of 147^{147}Nd and 147^{147}Pm in w-AlN

    Get PDF
    We report a detailed crystal field analysis of Pm3+ and Sm3+ as well as lattice location studies of 147Pm and 147Nd in 2H-aluminum nitride (w-AlN). The isotopes of mass 147 were produced by nuclear fission and implanted at an energy of 60 keV. The decay chain of interest in this work is 147Nd→147Pm→147Sm (stable). Lattice location studies applying the emission channeling technique were carried out using the β− particles and conversion electrons emitted in the radioactive decay of 147Nd→147Pm. The samples were investigated as implanted, and also they were investigated after annealing to temperatures of 873 K as well as 1373 K. The main fraction of about 60% of both 147Pm as well as 147Nd atoms was located on substitutional Al sites in the AlN lattice; the remainder of the ions were located randomly within the AlN lattice. Following radioactive decay of 147Nd, the cathodoluminescence spectra of Pm3+ and Sm3+ were obtained between 500 nm and 1050 nm at sample temperatures between 12 K and 300 K. High-resolution emission spectra, representing intra-4f electron transitions, were analyzed to establish the crystal-field splitting of the energy levels of Sm3+ (4f5) and Pm3+ (4f4) in cationic sites having C3v symmetry in the AlN lattice. Using crystal-field splitting models, we obtained a rms deviation of 6 cm−1 between 31 calculated-to-experimental energy (Stark) levels for Sm3+ in AlN. The results are similar to those reported for Sm3+ implanted into GaN. Using a set of crystal-field splitting parameters Bnm, for Pm3+ derived from the present Sm3+ analysis, we calculated the splitting for the 5F1, 5I4, and 5I5 multiplet manifolds in Pm3+ and obtained good agreement between the calculated and the experimental Stark levels. Temperature-dependent lifetime measurements are also reported for the emitting levels 4F5∕2 (Sm3+) and 5F1 (Pm3+)
    corecore