31 research outputs found

    Advancing Community Public Health Systems in the 21st Century: Emerging Strategies and Innovations from the Turning Point Experience

    Get PDF
    The findings presented in this report were generated from: NACCHO's technical assistance efforts supporting two years of community planning, including four national Turning Point forums; evaluation reports compiled by The Lewin Group; all written reports and systems improvement plans submitted by the 41 community/tribal Turning Point partnerships; and findings derived from activities implemented by the Center for the Advancement of Collaborative Strategies in Health at the New York Academy oF Medicine

    Accelerated age-related degradation of the tectorial membrane in the Ceacam16 βgal/βgal null mutant mouse, a model for late-onset human hereditary deafness DFNB113

    Get PDF
    CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16 βgal/βgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/βgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/βgal and Ceacam16βgal/βgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16βgal/βgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16βgal/βgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ~12 months, SOAEs and DPOAEs are not detected in Ceacam16βgal/βgal mice and ABR thresholds are increased by up to ~40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16βgal/βgal mice, it increases in ageing heterozygous Ceacam16+/βgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16βgal/βgal mice, is also seen in Ceacam16+/+ and Ceacam16+/βgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss

    1. Tackling Health Inequities: A Framework for Public

    No full text
    Social justice has always been a core value driving public health. Today, much of the etiology of avoidable disease is rooted in inequitable social conditions brought on by disparities in wealth and power and reproduced through ongoing forms of oppression, exploitation, and marginalization. Tackling Health Inequities raises questions and provides a starting point for health practitioners ready to reorient public health practice to involves restructuring the organization, culture and daily work of public health. Tackling Health Inequities is meant to inspire readers to imagine or envision public health practice and their role in ways that question contemporary thinking and assumptions, as emerging trends, social conditions, and policies generate increasing inequities in health
    corecore