10 research outputs found

    Variation in the daily activity, movement and refugia of Critically Endangered geometric tortoises, Psammobates geometricus, in autumn and spring

    Get PDF
    To help assess habitat requirements of Critically Endangered geometric tortoises, we used thread-trailing to measure daily activity, movements and refugia of adult Psammobates geometricus in autumn and spring 2002. We found strong differences between seasons, and effects of weather, individuals and sex. The high activity was consistent with mild weather during autumn and spring. However, daily temperatures limited female movements on cool autumn days and male movements on warm spring days, a pattern consistent with sexual size dimorphism (large females and small males). The long movements in autumn probably helped tortoises find food plants that grow quickly after autumn rains; both sexes recover body condition from autumn lows, and females begin egg production in late-autumn and winter. These movements may also help males mate with females before they ovulate. The high activity of females in spring should help them forage and sustain their vitellogenesis, egg production and nesting in spring. Male paths tended to be more linear than female paths in both seasons, so this sexual difference is likely not linked to food consumption. Males may move long, linear paths to engage females and avoid other males. Males may have been thermally-challenged in spring. Their movements decreased with increased ground temperatures (in the sun), they used denser refugia in spring than in autumn, and in spring used denser refugia than females used. Geometric tortoises typically used different refugia on consecutive nights, a type of predator avoidance mechanism

    Thermal properties of the pelages of selected African ungulates

    Get PDF
    In wild African ungulates the thickness of the pelage decreases with increasing body size. Thermal conductance decreases with increasing pelage depth, despite the fact that conductivity increases with increasing depth. Forced convection has a more pronounced effect upon the insulation of thin pelages than on thicker pelages, because in thin pelages the boundary layer Is of greater importance. The colour differences between the ungulate species result in weighted mean absorptances for solar radiation which vary between 0,25 and 0,85. The thermal properties of the pelages of African ungulates play an important role in the physiological ecology of these animals

    Living with the genetic signature of Miocene induced change: Evidence from the phylogeographic structure of the endemic angulate tortoise Chersina angulata

    No full text
    The phylogeographic structure of the monotypic endemic southern African angulate tortoise Chersina angulata was investigated throughout its distribution with the use of partial sequences from three mtDNA loci (COI, cyt b and ND4). Phylogeographic and phylogenetic structuring obtained for the three mtDNA markers were highly congruent and suggested the presence of two genetically distinct, reciprocally monophyletic evolutionary lineages. Group one contained two subclades with haplotypes from the north-western Cape and south-western Cape, respectively, while haplotypes from the southern Cape comprised group two. The two major clades were separated by nine and eight mutational steps for COI and ND4, respectively. Of the three mtDNA gene regions examined, the ND4 partial sequence contained the most phylogenetic signal. Haplotype diversity was generally low and we recovered 34 haplotypes for the 125 animals sequenced for the ND4 subunit. Nested clade analyses performed on the variable ND4 partial sequences suggested the presence of two major refugial areas for this species. The demographic history of the taxon was characterised by range expansion and prolonged historical fragmentation. Divergence time estimates suggest that the temporal and spatial distribution of the taxon was sculpted by changes in temperature and rainfall patterns since the late Miocene. Corroborative evidence from other reptiles is also suggestive of a late Miocene divergence, indicating that this was a major epoch for cladogenesis in southern Africa. Apart from the genetic differences between the two major clades, we also note morphometric and behavioural differences, alluding to the presence of two putative taxa nested within C. angulata. © 2007 Elsevier Inc. All rights reserved.Articl

    The likely efficiency of prenatal energy utilization

    Get PDF
    No Abstrac

    Lightweight defect localization for java

    No full text
    Abstract. A common method to localize defects is to compare the coverage of passing and failing program runs: A method executed only in failing runs, for instance, is likely to point to the defect. Some failures, though, come to be only through a specific sequence of method calls, such as multiple deallocation of the same resource. Such sequences can be collected from arbitrary Java programs at low cost; comparing object-specific sequences predicts defects better than simply comparing coverage. In a controlled experiment, our technique pinpointed the defective class in 36 % of all test runs.

    Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa)

    No full text
    We investigated the phylogeographic differentiation of the widely distributed African helmeted terrapin Pelomedusa subrufa based on 1503 base pairs of mitochondrial DNA (partial cyt b and ND4 genes with adjacent tRNAs) and 1937 bp of nuclear DNA (partial Rag1, Rag2, R35 genes). Congruent among different analyses, nine strongly divergent mitochondrial clades were found, representing three major geographical groupings: (1) A northern group which includes clades I from Cameroon, II from Ghana and Ivory Coast, III from Benin, Burkina Faso and Niger, IV from the Central African Republic, and V from Kenya, (2) a northeastern group consisting of clades VI from Somalia, and VII from Saudi Arabia and Yemen, and (3) a southern group comprising clade VIII from Botswana, the Democratic Republic of Congo, Madagascar and Malawi, and clade IX from South Africa. Malagasy and continental African populations were not clearly differentiated, indicating very recent arrival or introduction of Pelomedusa in Madagascar. The southern group was in some phylogenetic analyses sister to Pelusios, rendering Pelomedusa paraphyletic with respect to that genus. However, using partitioned Bayesian analyses and sequence data of the three nuclear genes, Pelomedusa was monophyletic, suggesting that its mitochondrial paraphyly is due to either ancient introgressive hybridization or phylogenetic noise. Otherwise, nuclear sequence data recovered a lower level of divergence, but corroborated the general differentiation pattern of Pelomedusa as revealed by mtDNA. This, and the depth of the divergences between clades, indicates ancient differentiation. The divergences observed fall within, and in part exceed considerably, the differentiation typically occurring among chelonian species. To test whether Pelomedusa is best considered a single species composed of deep genealogical lineages, or a complex of up to nine distinct species, we suggest a future taxonomic revision that should (1) extend the geographical sampling of molecular data, specifically focusing on contact zones and the possible sympatric occurrence of lineages without admixture, and (2) evaluate the morphology of the various genealogical lineages using the type specimens or topotypical material of the numerous junior synonyms of P. subrufa. © 2010 Elsevier Inc.Articl

    Approaches to Biosimulation of Cellular Processes

    No full text
    Modelling and simulation are at the heart of the rapidly developing field of systems biology. This paper reviews various types of models, simulation methods, and theoretical approaches that are presently being used in the quantitative description of cellular processes. We first describe how molecular interaction networks can be represented by means of stoichiometric, topological and kinetic models. We briefly discuss the formulation of kinetic models using mesoscopic (stochastic) or macroscopic (continuous) approaches, and we go on to describe how detailed models of molecular interaction networks (silicon cells) can be constructed on the basis of experimentally determined kinetic parameters for cellular processes. We show how theory can help in analyzing models by applying control analysis to a recently published silicon cell model. Finally, we review some of the theoretical approaches available to analyse kinetic models and experimental data, respectively

    Metabolic Engineering

    No full text
    corecore