1,631 research outputs found

    Late evolution of cataclysmic variables: the loss of AM Her systems

    Get PDF
    The white dwarf in AM Her systems is strongly magnetic and keeps in synchronous rotation with the orbit by magnetic coupling to the secondary star. As the latter evolves through mass loss to a cool, degenerate brown dwarf it can no longer sustain its own magnetic field and coupling is lost. Angular momentum accreted then spins up the white dwarf and the system no longer appears as an AM Her system. Possible consequences are run-away mass transfer and mass ejection from the system. Some of the unusual cataclysmic variable systems at low orbital periods may be the outcome of this evolution.Comment: 6 pages, 1 figure, Proceedings of "Cataclysmic Variables", Symposium in Honour of Brian Warner, Oxford 1999, eds. P.Charles, A.King, O'Donoghue, to appea

    The relation between radio and X-ray luminosity of black hole binaries: affected by inner cool disks?

    Full text link
    Observations of the black hole X-ray binaries GX 339-4 and V404 Cygni have brought evidence of a strong correlation between radio and X-ray emission during the hard spectral state; however, now more and more sources, the so-called `outliers', are found with a radio emission noticeably below the established `standard' relation. Several explanations have already been considered, but the existence of dual tracks is not yet fully understood. We suggest that in the hard spectral state re-condensation of gas from the corona into a cool, weak inner disk can provide additional soft photons for Comptonization, leading to a higher X-ray luminosity in combination with rather unchanged radio emission, which presumably traces the mass accretion rate. As an example, we determined how much additional luminosity due to photons from an underlying disk would be needed to explain the data from the representative outlier source H1743-322. From the comparison with calculations of Compton spectra with and without the photons from an underlying disk, we find that the required additional X-ray luminosity lies well in the range obtained from theoretical models of the accretion flow. The radio/X-ray luminosity relation resulting from Comptonization of additional photons from a weak, cool inner disk during the hard spectral state can explain the observations of the outlier sources, especially the data for H1743-322, the source with the most detailed observations. The existence or non-existence of weak inner disks on the two tracks might point to a difference in the magnetic fields of the companion stars. These could affect the effective viscosity and the thermal conductivity, hence also the re-condensation process.Comment: 7 pages, 2 figures. Accepted for publication in A &

    Temperature effects on the 15-85-micron spectra of olivines and pyroxenes

    Get PDF
    Far-infrared spectra of laboratory silicates are normally obtained at room temperature even though the grains responsible for astronomical silicate emission bands seen at wavelengths >20 micron are likely to be at temperatures below ~150 K. In order to investigate the effect of temperature on silicate spectra, we have obtained absorption spectra of powdered forsterite and olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5+-0.5 K and at room temperature (295+-2K). To determine the changes in the spectra the resolution must be increased from 1 to 0.25 cm^-1 at both temperatures since a reduction in temperature reduces the phonon density, thereby reducing the width of the infrared peaks. Several bands observed at 295 K split at 3.5 K. At 3.5 K the widths of isolated single bands in olivine, enstatites and diopside are ~ 90% of their 295 K-widths. However, in forsterite the 3.5-K-widths of the 31-, 49- and 69-micron bands are, respectively, 90%, 45% and 31% of their 295 K widths. Due to an increase in phonon energy as the lattice contracts, 3.5-K-singlet peaks occur at shorter wavelengths than do the corresponding 295-K peaks; the magnitude of the wavelength shift increases from \~ 0-0.2 micron at 25 micron to ~0.9 micron at 80 micron. Changes in the relative absorbances of spectral peaks are also observed. The temperature dependence of lambda_pk and bandwidth shows promise as a means to deduce characteristic temperatures of mineralogically distinct grain populations. In addition, the observed changes in band strength with temperature will affect estimates of grain masses and relative mineral abundances inferred using room-temperature laboratory data.Comment: 11 pages, 7 figures including figures 3a and 3b. includes latex and eps files. Accepted by MNRAS on 15th March 200

    A Model for Spectral States and Their Transition in Cyg X-1

    Full text link
    A new accretion picture based on a small disk surrounding a black hole is developed for the wind-fed source Cyg X-1. The hard and soft spectral states of Cyg X-1 are interpreted in terms of co-spatial two component flows for the innermost region of an accretion disk. The state transitions result from the outward expansion and inward recession of this inner disk for the hard to soft and soft to hard transition respectively. The theoretical framework for state transitions in black hole X-ray binaries with high mass companions involving a change in the inner disk size, thus, differs from systems with low mass companions involving the change in the outer disk size. This fundamental difference stems from the fact that matter captured and supplied to the black hole in wind-fed systems has low specific angular momentum and is hot essentially heated in the bow and spiral shocks, whereas it has high specific angular momentum and is cool in Roche lobe overflow systems. The existence of a weak cool disk around the ISCO region in the hard state allows for the presence of a relativistically broadened Fe K line. The small disk fed by gas condensation forms without an extensive outer disk, precluding thermal instabilities and large outbursts, resulting in the lack of large amplitude outbursts and hysteresis effects in the light curve of high mass black hole X-ray binaries. Their relatively persistent X-ray emission is attributed to their wind-fed nature.Comment: 13 pages, 2 figures. Accepted for publication in Ap
    • …
    corecore