Far-infrared spectra of laboratory silicates are normally obtained at room
temperature even though the grains responsible for astronomical silicate
emission bands seen at wavelengths >20 micron are likely to be at temperatures
below ~150 K. In order to investigate the effect of temperature on silicate
spectra, we have obtained absorption spectra of powdered forsterite and
olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5+-0.5
K and at room temperature (295+-2K). To determine the changes in the spectra
the resolution must be increased from 1 to 0.25 cm^-1 at both temperatures
since a reduction in temperature reduces the phonon density, thereby reducing
the width of the infrared peaks. Several bands observed at 295 K split at 3.5
K. At 3.5 K the widths of isolated single bands in olivine, enstatites and
diopside are ~ 90% of their 295 K-widths. However, in forsterite the
3.5-K-widths of the 31-, 49- and 69-micron bands are, respectively, 90%, 45%
and 31% of their 295 K widths. Due to an increase in phonon energy as the
lattice contracts, 3.5-K-singlet peaks occur at shorter wavelengths than do the
corresponding 295-K peaks; the magnitude of the wavelength shift increases from
\~ 0-0.2 micron at 25 micron to ~0.9 micron at 80 micron. Changes in the
relative absorbances of spectral peaks are also observed. The temperature
dependence of lambda_pk and bandwidth shows promise as a means to deduce
characteristic temperatures of mineralogically distinct grain populations. In
addition, the observed changes in band strength with temperature will affect
estimates of grain masses and relative mineral abundances inferred using
room-temperature laboratory data.Comment: 11 pages, 7 figures including figures 3a and 3b. includes latex and
eps files. Accepted by MNRAS on 15th March 200