6,080 research outputs found
Generation of highly non-classical n-photon polarization states by super-bunching at a photon bottleneck
It is shown that coherent superpositions of two oppositely polarized n-photon
states can be created by post-selecting the transmission of n independently
generated photons into a single mode transmission line. It is thus possible to
generate highly non-classical n-photon polarization states using only the
bunching effects associated with the bosonic nature of photons. The effects of
mode-matching errors are discussed and the possibility of creating n-photon
entanglement by redistributing the photons into n separate modes is considered.Comment: 8 pages, including 4 figures, extended version of the original letter
paper, includes discussion of linear polarization statistic
Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers
We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous
semiconductor laser devices. The QMBE are derived from fully quantum mechanical
operator dynamics describing the interaction of the light field with the
quantum states of the electrons and the holes near the band gap. By taking into
account field-field correlations and field-dipole correlations, the QMBE
include quantum noise effects which cause spontaneous emission and amplified
spontaneous emission. In particular, the source of spontaneous emission is
obtained by factorizing the dipole-dipole correlations into a product of
electron and hole densities. The QMBE are formulated for general devices, for
edge emitting lasers and for vertical cavity surface emitting lasers, providing
a starting point for the detailed analysis of spatial coherence in the near
field and far field patterns of such laser diodes. Analytical expressions are
given for the spectra of gain and spontaneous emission described by the QMBE.
These results are applied to the case of a broad area laser, for which the
frequency and carrier density dependent spontaneous emission factor beta and
the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in
abstract and in the discussion of temporal coherenc
Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order
In our companion paper we identified a complete set of manifestly
gauge-invariant observables for general relativity. This was possible by
coupling the system of gravity and matter to pressureless dust which plays the
role of a dynamically coupled observer. The evolution of those observables is
governed by a physical Hamiltonian and we derived the corresponding equations
of motion. Linear perturbation theory of those equations of motion around a
general exact solution in terms of manifestly gauge invariant perturbations was
then developed. In this paper we specialise our previous results to an FRW
background which is also a solution of our modified equations of motion. We
then compare the resulting equations with those derived in standard
cosmological perturbation theory (SCPT). We exhibit the precise relation
between our manifestly gauge-invariant perturbations and the linearly
gauge-invariant variables in SCPT. We find that our equations of motion can be
cast into SCPT form plus corrections. These corrections are the trace that the
dust leaves on the system in terms of a conserved energy momentum current
density. It turns out that these corrections decay, in fact, in the late
universe they are negligible whatever the value of the conserved current. We
conclude that the addition of dust which serves as a test observer medium,
while implying modifications of Einstein's equations without dust, leads to
acceptable agreement with known results, while having the advantage that one
now talks about manifestly gauge-invariant, that is measurable, quantities,
which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
In-plane magnetic anisotropy of Fe atoms on BiSe(111)
The robustness of the gapless topological surface state hosted by a 3D
topological insulator against perturbations of magnetic origin has been the
focus of recent investigations. We present a comprehensive study of the
magnetic properties of Fe impurities on a prototypical 3D topological insulator
BiSe using local low temperature scanning tunneling microscopy and
integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the
BiSe surface, in the coverage range are heavily relaxed
into the surface and exhibit a magnetic easy axis within the surface-plane,
contrary to what was assumed in recent investigations on the opening of a gap.
Using \textit{ab initio} approaches, we demonstrate that an in-plane easy axis
arises from the combination of the crystal field and dynamic hybridization
effects.Comment: 5 pages, 3 figures, typos correcte
On (Cosmological) Singularity Avoidance in Loop Quantum Gravity
Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological
sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of
the phase space of classical General Relativity to spatially homogeneous
situations which is then quantized by the methods of LQG. Thus, LQC is a
quantum mechanical toy model (finite number of degrees of freedom) for LQG(a
genuine QFT with an infinite number of degrees of freedom) which provides
important consistency checks. However, it is a non trivial question whether the
predictions of LQC are robust after switching on the inhomogeneous fluctuations
present in full LQG. Two of the most spectacular findings of LQC are that 1.
the inverse scale factor is bounded from above on zero volume eigenstates which
hints at the avoidance of the local curvature singularity and 2. that the
Quantum Einstein Equations are non -- singular which hints at the avoidance of
the global initial singularity. We display the result of a calculation for LQG
which proves that the (analogon of the) inverse scale factor, while densely
defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in
full LQG, if curvature singularity avoidance is realized, then not in this
simple way. In fact, it turns out that the boundedness of the inverse scale
factor is neither necessary nor sufficient for curvature singularity avoidance
and that non -- singular evolution equations are neither necessary nor
sufficient for initial singularity avoidance because none of these criteria are
formulated in terms of observable quantities.After outlining what would be
required, we present the results of a calculation for LQG which could be a
first indication that our criteria at least for curvature singularity avoidance
are satisfied in LQG.Comment: 34 pages, 16 figure
- âŠ