6,080 research outputs found

    Generation of highly non-classical n-photon polarization states by super-bunching at a photon bottleneck

    Get PDF
    It is shown that coherent superpositions of two oppositely polarized n-photon states can be created by post-selecting the transmission of n independently generated photons into a single mode transmission line. It is thus possible to generate highly non-classical n-photon polarization states using only the bunching effects associated with the bosonic nature of photons. The effects of mode-matching errors are discussed and the possibility of creating n-photon entanglement by redistributing the photons into n separate modes is considered.Comment: 8 pages, including 4 figures, extended version of the original letter paper, includes discussion of linear polarization statistic

    Quantum Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers

    Get PDF
    We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous semiconductor laser devices. The QMBE are derived from fully quantum mechanical operator dynamics describing the interaction of the light field with the quantum states of the electrons and the holes near the band gap. By taking into account field-field correlations and field-dipole correlations, the QMBE include quantum noise effects which cause spontaneous emission and amplified spontaneous emission. In particular, the source of spontaneous emission is obtained by factorizing the dipole-dipole correlations into a product of electron and hole densities. The QMBE are formulated for general devices, for edge emitting lasers and for vertical cavity surface emitting lasers, providing a starting point for the detailed analysis of spatial coherence in the near field and far field patterns of such laser diodes. Analytical expressions are given for the spectra of gain and spontaneous emission described by the QMBE. These results are applied to the case of a broad area laser, for which the frequency and carrier density dependent spontaneous emission factor beta and the evolution of the far field pattern near threshold are derived.Comment: 22 pages RevTex and 7 figures, submitted to Phys.Rev.A, revisions in abstract and in the discussion of temporal coherenc

    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order

    Full text link
    In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einstein's equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure

    In-plane magnetic anisotropy of Fe atoms on Bi2_2Se3_3(111)

    Full text link
    The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on a prototypical 3D topological insulator Bi2_2Se3_3 using local low temperature scanning tunneling microscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi2_2Se3_3 surface, in the coverage range ≈1\approx 1% are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface-plane, contrary to what was assumed in recent investigations on the opening of a gap. Using \textit{ab initio} approaches, we demonstrate that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects.Comment: 5 pages, 3 figures, typos correcte

    On (Cosmological) Singularity Avoidance in Loop Quantum Gravity

    Full text link
    Loop Quantum Cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of Loop Quantum Gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical General Relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum mechanical toy model (finite number of degrees of freedom) for LQG(a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that 1. the inverse scale factor is bounded from above on zero volume eigenstates which hints at the avoidance of the local curvature singularity and 2. that the Quantum Einstein Equations are non -- singular which hints at the avoidance of the global initial singularity. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is {\it not} bounded from above on zero volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for curvature singularity avoidance and that non -- singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities.After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.Comment: 34 pages, 16 figure
    • 

    corecore