597 research outputs found

    Cavity-enhanced Raman Microscopy of Individual Carbon Nanotubes

    Get PDF
    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics

    U-loss associated with laser-heating of hematite and goethite in vacuum during (U-Th)/He dating and prevention using high Oâ‚‚ partial pressure

    Get PDF
    Single-aliquot (U-Th)/He dating of hematite has been used to study iron-oxide precipitation in various environments, but we show there is an important challenge to the method: highly retentive hematite samples require temperatures of > 1000° C to be completely degassed, whereas the temperature for major U-loss is ∼980° C. This leads to erroneously high (U-Th)/He ages. Through the analysis of U, Th, and Sm of hematite and goethite samples, we show the degree of U-loss at this temperature and demonstrate that prolonged heating at temperatures of 950° C can lead to U-loss. We show that loss of U in goethite and hematite samples is associated with phase change from hematite to magnetite as Fe is reduced. The onset temperature of vacuum reduction of hematite can be increased from about 800-900° C in vacuum to approximately 1250° C in an oxygen partial pressure of 100 mbar. We show that samples can be outgassed to extract helium at 1150° C without U-loss in an O₂-rich atmosphere during heating, which does not increase the analytical blanks. We describe our implementation and automation of the procedure. An average age calculated on a reference hematite sample from replicate aliquots (n=12), which were analyzed using this procedure, has a relative uncertainty of 2% (1σ), and is within uncertainty of the previously measured two-aliquot age. We suggest this O₂ degassing procedure as a way to precisely and reproducibly determine single-aliquot hematite and goethite (U-Th)/He ages

    VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research

    Get PDF
    Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research

    Casimir effect between anti-de Sitter braneworlds

    Full text link
    We calculate the one-loop effective action of a scalar field with general mass and coupling to the curvature in the detuned Randall-Sundrum brane world scenario, where the four-dimensional branes are anti-de Sitter. We make use of conformal transformations to map the problem to one on the direct product of the hyperbolic space H^4 and the interval. We also include the cocycle function for this transformation. This Casimir potential is shown to give a sizable correction to the classical radion potential for small values of brane separation.Comment: 14 pages, 3 figures, revtex. Typos corrected and references added. Minor mistakes in Eq. 48 and Eq. A10 correcte

    Synthesis and cryogenic spectroscopy of narrow-diameter single-wall carbon nanotubes

    Get PDF
    AbstractWe report chemical vapor deposition and cryogenic photoluminescence studies of narrow-diameter single-wall carbon nanotubes. Our systematic study of synthesis parameters identifies means to control the average length, diameter, and areal density of carbon nanotubes grown on silica substrates. Using synthesis conditions that favor the growth of carbon nanotubes with sub-nanometer diameters, we fabricate samples with spatially isolated suspended nanotubes ideally suited for optical studies. Photoluminescence spectroscopy of individual nanotubes reveals two classes: spectrally broad and narrow single-peak emission at the temperature of liquid helium. The latter class with spectral line widths down to the resolution limit of our spectrometer of 40 μeV indicates that exciton coherence in carbon nanotubes can be substantially improved by controlling the growth conditions and utilized in sources of indistinguishable single photons

    Circulating resistin levels and risk of multiple myeloma in three prospective cohorts

    Get PDF
    BACKGROUND: Resistin is a polypeptide hormone secreted by adipose tissue. A prior hospital-based case-control study reported serum resistin levels to be inversely associated with risk of multiple myeloma (MM). To date, this association has not been investigated prospectively. METHODS: We measured resistin concentrations for pre-diagnosis peripheral blood samples from 178 MM cases and 358 individually matched controls from three cohorts participating in the MM cohort consortium. RESULTS: In overall analyses, higher resistin levels were weakly associated with reduced MM risk. For men, we observed a statistically significant inverse association between resistin levels and MM (odds ratio, 0.44; 95% confidence interval (CI) 0.24-0.83 and 0.54; 95% CI 0.29-0.99, for the third and fourth quartiles, respectively, vs the lowest quartile; Ptrend=0.03). No association was observed for women. CONCLUSIONS: This study provides the first prospective evidence that low circulating resistin levels may be associated with an increased risk of MM, particularly for men
    • …
    corecore