394 research outputs found

    A New Model for Estimating the Diffuse Fraction of Solar Irradiance for Photovoltaic System Simulations

    Get PDF
    We present a new model for the calculation of the diffuse fraction of the global solar irradiance for solar system simulations. The importance of an accurate estimation of the horizontal diffuse irradiance is highlighted by findings that an inaccurately calculated diffuse irradiance can lead to significant over- or underestimations in the annual energy yield of a photovoltaic (PV) system by as much as 8%. Our model utilizes a time series of global irradiance in one-minute resolution and geographical information as input. The model is validated by measurement data of 28 geographically and climatologically diverse locations worldwide with one year of one-minute data each, taken from the Baseline Surface Radiation Network (BSRN). We show that on average the mean absolute deviation of the modelled and the measured diffuse irradiance is reduced from about 12% to about 6% compared to three reference models. The maximum deviation is less than 20%. In more than 80% of the test cases, the deviation is smaller 10%. The root mean squared error (RMSE) of the calculated diffuse fractions is reduced by about 18%

    Principles of the therapy of bone infections in adult extremities: Are there any new developments?

    Get PDF
    Septic diseases of the bone and immediately surrounding soft tissues can be differentiated into osteitis or osteomyelitis. Both are a most serious diagnosis in modern traumatology and orthopaedic surgery. The basis for treatment is a highly specific, problem-adapted therapy with a defined strategy, the paramount goal being to preserve the stable weightbearing bones, maintain a good mechanical axis with correctly working muscles and joints, and avoid permanent disability. “State-of-the-art” therapy of osteitis and osteomyelitis has two priorities: (a) Eradication of the infection; (b) Reconstruction of bone and soft tissue. Surgical treatment with resection of the affected bone segments and soft tissue, followed by reconstructive methods continues to be the main basic therapy, and is supported by local and systemic antibiotics and adjuvant methods such as hyperbaric oxygen. This article provides an overview of the diagnostic features and different surgical procedures as well as the current literature in order to reach the above named goals

    Human osteochondritis dissecans fragment-derived chondrocyte characteristics ex vivo, after monolayer expansion-induced de-differentiation, and after re-differentiation in alginate bead culture

    Get PDF
    Background Autologous chondrocyte implantation (ACI) is a therapy for articular cartilage and osteochondral lesions that relies on notch- or trochlea-derived primary chondrocytes. An alternative cell source for ACI could be osteochondritis dissecans (OCD) fragment-derived chondrocytes. Assessing the potential of these cells, we investigated their characteristics ex vivo and after monolayer expansion, as monolayer expansion is an integral step of ACI. However, as monolayer expansion can induce de-differentiation, we asked whether monolayer-induced de-differentiation can be reverted through successive alginate bead culture. Methods Chondrocytes were isolated from the OCD fragments of 15 patient knees with ICRS grades 3–4 lesions for ex vivo analyses, primary alginate bead culture, monolayer expansion, and alginate bead culture following monolayer expansion for attempting re-differentiation. We determined yield, viability, and the mRNA expression of aggrecan and type I, II, and X collagen. Results OCD fragment-derived chondrocyte isolation yielded high numbers of viable cells with a low type I:II collagen expression ratio ( 1. Conclusion OCD fragment derived human chondrocytes may hold not yet utilized clinical potential for cartilage repair. Keywords: Chondrocyte; Articular cartilage; De-differentiation Re-differentiation; Monolayer expansion; Alginate bead cultur

    Preservation of the shoulder joint by the use of a hybrid-spacer after septic loosening of a reversed total shoulder joint arthroplasty: a case report

    Get PDF
    Infections of a total joint replacement (TJR) of the shoulder are rare complications. After revision surgery, the incidence rises dramatically. If infection occurs, it leads to a loss of function and may be devastating to the joint. Treatment options range from single- to multiple-staged revision programs, permanent resection arthroplasty or exarticulation. In this case, a reversed shoulder endoprosthesis, which was implanted after multiple revisions of a TJR due to a posttraumatic omarthrosis and rotator cuff insufficiency, got infected. A hybrid-spacer, made of a humeral nail and a custom-made PMMA spacer forming the humeral head, was used during the revision program. After two operations, clinical and paraclinical signs turned back to normal. The patient felt well and was satisfied with the result of the therapy. The hybrid-spacer was then left in situ as a definitive solution with a satisfying range of motion. This case report shows that a hybrid-spacer can be helpful in the treatment of an infected shoulder TJR

    Robust execution of bipedal walking tasks from biomechanical principles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 348-352).Effective use of robots in unstructured environments requires that they have sufficient autonomy and agility to execute task-level commands successfully. A challenging example of such a robot is a bipedal walking machine. Such a robot should be able to walk to a particular location within a particular time, while observing foot placement constraints, and avoiding a fall, if this is physically possible. Although stable walking machines have been built, the problem of task-level control, where the tasks have stringent state-space and temporal requirements, and where significant disturbances may occur, has not been studied extensively. This thesis addresses this problem through three objectives. The first is to devise a plan specification where task requirements are expressed in a qualitative form that provides for execution flexibility. The second is to develop a task-level executive that accepts such a plan, and outputs a sequence of control actions that result in successful plan execution. The third is to provide this executive with disturbance handling ability. Development of such an executive is challenging because the biped is highly nonlinear and has limited actuation due to its limited base of support. We address these challenges with three key innovations.(cont.) To address the nonlinearity, we develop a dynamic virtual model controller to linearize the biped, and thus, provide an abstracted biped that is easier to control. The controller is model-based, but uses a sliding control technique to compensate for model inaccuracy. To address the under-actuation, our system generates flow tubes, which define valid operating regions in the abstracted biped. The flow tubes represent sets of state trajectories that take into account dynamic limitations due to under-actuation, and also satisfy plan requirements. The executive keeps trajectories in the flow tubes by adjusting a small number of control parameters for key state variables in the abstracted biped, such as center of mass. Additionally, our system uses a novel strategy that employs angular momentum to enhance translational controllability of the system's center of mass. We evaluate our approach using a high-fidelity biped simulation. Tests include walking with foot-placement constraints, kicking a soccer ball, and disturbance recovery.by Andreas G. Hofmann.Ph.D

    External iliac artery thrombosis associated with the ilio-inguinal approach in the management of acetabular fractures: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The ilio-inguinal approach has come to be used routinely in the management of acetabular fractures involving the anterior wall. Thrombotic complications following surgery via this route are a serious, but rare, complication.</p> <p>Case presentation</p> <p>We report the case of a 66-year-old male patient who slipped on an icy pavement and fell on his left hip. He sustained a comminuted acetabular fracture (a transtectal T-fracture with an incomplete posterior stem through the ischial tuberosity), and was operated on five days later, via an ilio-inguinal approach. In the recovery room, his left lower limb was found to be cool and pale. Immediate re-exploration showed a left external iliac artery thrombosis, and thrombectomy was performed. In the surgical management of acetabular fractures, thrombosis of a major pelvic artery is a rare but potentially devastating complication. We discuss the possible aetiology (initial vessel trauma versus iatrogenic, intraoperative arterial injury) and pathomechanism, and wish to draw attention to this complication and to recommend ways in which it can be prevented.</p> <p>Conclusion</p> <p>We recommend circulation monitoring in patients with acetabular fractures, especially where nerve blocks and/or deep sedation/analgesia have been used. High-risk patients should be identified and subjected to intensive preoperative screening, including ultrasonography and if necessary angiography.</p

    The use of a retrograde fixed-angle intramedullary nail for tibiocalcaneal arthrodesis after severe loss of the talus

    Get PDF
    Tibiocalcaneal arthrodesis may be the only means of obtaining a painless and stable limb when there is loss of the talus. We present the early results of a prospective study on tibiocalcaneal arthrodesis using a latest-generation retrograde intramedullary nail. In the period 2006–2007, nine patients underwent tibiocalcaneal arthrodesis with retrograde intramedullary nailing. Five of these patients had infection-related loss of the talus. SF-36, AOFAS ankle-hindfoot, and Mazur Ankle Arthrodesis scores were obtained pre-fusion, and at 6 weeks, 6 months and 1 year post-fusion. The patients were also followed up clinically and radiologically. Previous surgical procedures, chronic musculoskeletal problems and other comorbidities, and complications were recorded and analyzed. All patients were available for initial follow-up and were subjectively satisfied with their outcomes. Solid fusion was achieved and fully confirmed in nine cases. One subject died 8 weeks postoperatively of a pulmonary embolism. One patient had recurrent infection. At 1 year, only one patient still needed NSAIDs regularly for pain relief. The AOFAS score improved significantly (P = 0.012) from 32.1 pre-fusion to 71.5 points at 1 year as did the Mazur score, which rose by 31.2 to 72.5 points at 1 year (P = 0.012). The SF-36 score improved significantly in the domains physical functioning, role limitations due to physical problems, bodily pain, vitality, social functioning and mental health, as did the Physical Component Summary Score. Retrograde intramedullary nailing for tibiocalcaneal arthrodesis can produce a good outcome. However, in the presence of infection, patient selection for intramedullary procedures must be carefully considered on a case-by-case basis

    Long-term stability of angle-stable versus conventional locked intramedullary nails in distal tibia fractures

    Get PDF
    Background: In the last years intramedullary nailing has become the treatment of choice for most displaced diaphyseal tibia fractures. In contrast intramedullary nailing of distal tibia fractures is accompanied by problems like decreased biomechanical stability. Nevertheless the indications for intramedullary nailing have been extended to include even more distal fractures. The purpose of this study was to compare long-term mechanical characteristics of angle-stable versus conventional locked intramedullary nails in the treatment of unstable distal tibia fractures. Therefore, the effect of time on the mechanical properties of biodegradable sleeves was assessed. Methods: 8 pairs of fresh, frozen porcine tibiae were used. The expert tibial nail (Synthes) was equipped with either three conventional locking screws (CL) or the angle-stable locking system (AS), consisting of a special ASLS screw and a biodegradable sleeve. Biomechanical testing included torsional and axial loading at different time-points over 12 weeks. Results: The AS group showed a significantly higher torsional stiffness at all time-points (at least 60%) compared to the CL group (p 0.05). For axial stiffness and range of motion significant differences were found in the AS group. Conclusions: The angle-stable locking system (ASLS) with the biodegradable sleeve provides significantly higher long-term stability. Especially the differences determined under torsional loading in this study may have clinical relevance. The ASLS permits the potential to decrease complications like secondary loss of reduction and mal-/non-union.
    • …
    corecore