6 research outputs found

    Effects of veratrine on skeletal muscle mitochondria: Ultrastructural, cytochemical, and morphometrical studies

    No full text
    The alkaloid veratrine is a lipid-soluble neurotoxin, which target voltage-gated Na+ channels for their primary action. Recently, we showed that this alkaloid may cause myonecrosis and evidences suggest mitochondria as one of its cell targets. Herein, we investigate the effects caused by variable concentration of veratrine (250 and 550 mu g/mL) on mitochondrial oxygen consumption, respiratory chain enzymes activities, and ultrastructure, combining electron microscopy with cytochemical and biochemical approaches. The results showed different sort of ultrastructural changes, both in isolated and intramuscular mitochondria. Veratrine decreased mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH-d), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) activities, significantly and dose-dependently inhibited the state 3 respiration rate, respiratory control ratio (RCR), and ADP/O on isolated rat skeletal muscle mitochondria, whereas state 4 was unaffected. A tendency of increase in mitochondria diameter was seen with 250 mu g/mL veratrine. We conclude that the alkaloid would probably act on mitochondrial membrane phospholipid configuration, which would explain the changes observed.69210811

    Guanidine Affects Differentially the Twitch Response of Diaphragm, Extensor Digitorum Longus and Soleus Nerve-Muscle Preparations of Mice

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Guanidine has been used with some success to treat myasthenia gravis and myasthenic syndrome because it increases acetylcholine release at nerve terminals through K+, Na+ and Ca2+ channels-involving mechanisms. Currently, guanidine derivatives have been proposed for treatment of several diseases. Studies aimed at providing new insights to the drug are relevant. Experimentally, guanidine (10 mM) induces on mouse phrenic nerve-diaphragm (PND) preparations neurotransmission facilitation followed by blockade and a greatest secondary facilitation after its removal from bath. Herein, we hypothesized that this peculiar triphasic response may differ in muscles with distinct twitch/metabolic characteristics. Morphological alterations and contractile response of PND, extensor digitorum longus (EDL) and soleus (SOL) preparations incubated with guanidine (10 mM) for 15, 30, 60 min were analyzed. Guanidine concentrations of 5 mM (for PND and EDL) and 1 mM (for EDL) were also tested. Guanidine triphasic effect was only observed on PND regardless the concentration. The morphological alterations in muscle tissue varied along time but did not impede the PND post-wash facilitation. Higher doses (20-25 mM) did not increase EDL or SOL neurotransmission. The data suggest a complex mechanism likely dependent on the metabolic/contractile muscle phenotype; muscle fiber types and density/type of ion channels, sarcoplasmic reticulum and mitochondria organization may have profound impact on the levels and isoform expression pattern of Ca2+ regulatory membrane proteins so reflecting regulation of calcium handling and contractile response in different types of muscle.17675037522Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [Proc. n. 303273/2005-4]FAPESP [93/4995-5, 96/11653-8

    Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria

    No full text
    We have previously shown that veratrine, a mixture of alkaloids known as Veratrum alkaloids, produces skeletal muscle toxicity, and there is evidence that veratrine interferes with the energetics of various systems, including cardiomyocytes and synaptosomes. In this work, we explored the effects of veratrine and veratridine, a component of this mixture, in rat skeletal muscle mitochondria and compared the results with those seen in liver mitochondria. Veratrine and veratridine alkaloids caused a significant concentration-dependent decrease in the rate of state 3 respiration, respiratory control (RCR) and ADP/O ratios in isolated rat skeletal muscle mitochondria (RMM), but not in rat liver mitochondria (RLM) supported by either NADH-linked substrates or succinate. The oxygen consumption experiments showed that RMM were more susceptible to the toxic action of Veratrum alkaloids than RLM. The addition of veratrine (250 mu g/ml) to RMM caused dissipation of the mitochondrial electrical membrane potential during succinate oxidation, but this effect was totally reversed by adding ATP. These results indicate that there are chemical- and tissue-specific toxic effects of veratrine and veratridine on mitochondrial respiratory chain complexes. Identification of the specific respiratory chain targets involved should provide a better understanding of the molecular mechanisms of the toxicity of these agents. (c) 2006 Elsevier Ltd. All rights reserved.47778078

    Acute blood-brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom

    No full text
    A highly controlled transport of substances at the interface between blood and brain characterizes the blood-brain barrier (BBB), fundamental for maintenance of the homeostasis of the cerebral milieu. In this study, we investigated the time course (15 min, 1, 2, and 5 h) of BBB opening induced by intravenous (i.v.) injection of Phoneutria nigriventer spider venom (PNV) using quantitative and morphological approaches on cerebellum and hippocampus vessels for assessment of BBB permeability. The results showed vasogenic edema and tracer extravasation faster and severalfold higher in hippocampus than in cerebellum. Reactive astrocytes with swollen perivascular end-feet processes were found only in cerebellum. An immediate and total degradation of laminin in capillaries occurred resulting in the disappearance of the basement membrane. In medium-sized vessels, this effect was less prominent. The changes were transient, with cerebellum in general presenting a faster recovery. However, at 5 h laminin was overexpressed, principally in hippocampus. The rapid and abrupt shift of laminin expression in capillaries (at 15 min) coincided with the immediate and severe signs of intoxication shown by the animals, but not with the peak of leakage of vessels and vasogenic edema, which occurred later (1-2 h). The findings suggest a complex regulatory mechanism, since the extension of BBB impairment caused by PNV depends on the region of the SNC, and on the vessels types. It is suggested that the components of the BBB (gliovascular unit) have a critical role in these differences. P. nigriventer venom can be a useful tool to explore the mechanisms of BBB. (c) 2007 Elsevier B.V. All rights reserved.1149182

    Histopathological changes in avian kidney caused by Bothrops insularis (jararaca ilhoa) venom and a phospholipase A(2)-containing fraction

    No full text
    The histopathological changes induced in avian kidney by the intramuscular injection of Bothrops insularis (jararaca ilhoa) venom and its phospholipase A(2) (PLA(2))-containing fraction were examined. Acute experiments (3 h and 24 h) with B. insularis crude venom (20 mug and 80 mug) or its PLA(2)-contaning fraction (10 mug and 40 mug) resulted in significant structural damage to the kidneys of 5-12-day-old chicks. Histopathological analysis indicated that the venom and its fraction acted on the renal tubules and glomeruli. The morphological changes, although widespread, varied in intensity from cell to cell, and from tubule to tubule in venom-injected chicks. The tubular and glomerular changes produced by the venom and its PLA(2)-containing fraction may be the result of a direct cytotoxic effect potentiated by ischemia-related disturbances in the regional hemodynamics. The venom and its fraction affected more segments along reptilian-type nephrons than along mammalian ones. This divergent sensitivity to the venom and its fraction may reflect the species-specific characteristics of B. insularis snake, an example of geographical isolation influencing its diet which is almost exclusively avian.16118519

    Pharmacological Study of Edema and Myonecrosis in Mice Induced by Venom of the Bushmaster Snake (Lachesis muta muta) and Its Basic Asp49 Phospholipase A(2) (LmTX-I)

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Previous in vitro studies show that Lachesis muta venom and its purified Asp49 phospholipase A(2), named as LmTX-I, display potent neurotoxic and myotoxic activities. Here, an in vivo study was conducted to investigate some pharmacological effects of the venom or its LmTX-I toxin, after intra-muscular injection in tibialis anterior (TA) and following subplantar injection in hind paws of mice. Findings showed that LmTX-I increased plasma creatine kinase activity and produced strong myonecrosis and inflammatory reactions in TA muscle. In addition to these effects, the venom also induced intense local hemorrhage. Pre-treatment of the venom with EDTA (5 mM) significantly inhibited the edema and hemorrhage. Histological examination showed that L. muta venom caused inner dermal layer thickening in the pad hind paw. In addition, there was marked inflammatory cell infiltration, particularly of neutrophils, and hemorrhage. LmTX-I also demonstrated edema-forming activity, which was inhibited by pretreatment with indomethacin.276384391Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore