3,036 research outputs found

    Sharing expertise/data/reagents

    Get PDF

    Sharing expertise/data/reagents

    Get PDF

    Learning Machines Supporting Bankruptcy Prediction

    Get PDF
    In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification rule called a score or an SVM. Companies with scores above zero belong to one group and the rest to another group. Estimation of the probability of default (PD) values can be calculated from the scores provided by an SVM. The transformation used in this paper is a combination of weighting ranks and of smoothing the results using the PAV algorithm. The conversion is then monotone. This discussion paper is based on the Creditreform database from 1997 to 2002. The indicator variables were converted to financial ratios; it transpired out that eight of the 25 were useful for the training of the SVM. The results showed that those ratios belong to activity, profitability, liquidity and leverage. Finally, we conclude that SVMs are capable of extracting the necessary information from financial balance sheets and then to predict the future solvency or insolvent of a company. Banks in particular will benefit from these results by allowing them to be more aware of their risk when lending money.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Profitability

    An introduction to endoreversible thermodynamics

    Get PDF
    Reversible thermodynamic processes are convenient abstractions of real processes, which are always irreversible. Approaching the reversible regime means to become more and more quasistatic, letting behind processes which achieve any kind of finite transformation rate for the quantities studied. On the other hand studying processes with finite transformation rates means to deal with irreversibilities and in many cases these irreversibilities must be included in a realistic description of such processes. Endoreversible thermodynamics is a non-equilibrium approach in this direction by viewing a system as a network of internally reversible (endoreversible) subsystems exchanging energy in an irreversible fashion. This material provides an introduction to the subject

    A Dynamically Diluted Alignment Model Reveals the Impact of Cell Turnover on the Plasticity of Tissue Polarity Patterns

    Full text link
    The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisation in response to an opposing instructive cue, which we here consider by example of experimentally inducible body axis inversions in planarian flatworms. Our dynamically diluted alignment model represents three processes: entrainment of cell polarity by a global signal, local cell-cell coupling aligning polarity among neighbours and cell turnover inserting initially unpolarised cells. We show that a persistent global orienting signal determines the final mean polarity orientation in this stochastic model. Combining numerical and analytical approaches, we find that neighbour coupling retards polarity pattern reorganisation, whereas cell turnover accelerates it. We derive a formula for an effective neighbour coupling strength integrating both effects and find that the time of polarity reorganisation depends linearly on this effective parameter and no abrupt transitions are observed. This allows to determine neighbour coupling strengths from experimental observations. Our model is related to a dynamic 88-Potts model with annealed site-dilution and makes testable predictions regarding the polarisation of dynamic systems, such as the planarian epithelium.Comment: Preprint as prior to first submission to Journal of the Royal Society Interface. 25 pages, 6 figures, plus supplement (18 pages, contains 1 table and 7 figures). A supplementary movie is available from https://dx.doi.org/10.6084/m9.figshare.c388781

    Einleitung

    Get PDF

    Einleitung

    Get PDF

    Endoreversible Thermodynamics: A Tool for Simulating and Comparing Processes of Discrete Systems

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Endoreversible thermodynamics is concerned with reversible sub-systems that are in irreversible interaction with each other. Consequently, endoreversible thermodynamics represents the analogue for discrete systems to the local equilibrium hypothesis in continuum thermodynamics. Here a real cyclic 2-reservoir process is simulated by different endoreversible model processes. Simulation means that the simulating process has the same net heat exchanges, cycle time, power, entropy production, and efficiency as the original one. By introducing process-independent simulation parameters as constraints for the irreversible interaction, a family of comparative endoreversible processes is generated including the simulation of the original process. This procedure allows the process parameters of the family of comparative processes to be compared to those of the original one. The fraction “power of the real process over the maximal power inbetween the comparative family” is introduced as a parameter describing the process excellence
    • 

    corecore