
J. Non-Equilib. Thermodyn.
2006 � Vol. 31 � pp. 293–317

J. Non-Equilib. Thermodyn. � 2006 �Vol. 31 � No. 3
6 Copyright 2006 Walter de Gruyter �Berlin �New York. DOI 10.1515/JNETDY.2006.013

Endoreversible Thermodynamics: A Tool
for Simulating and Comparing Processes
of Discrete Systems‡

Wolfgang Muschik1,* and Karl Heinz Hoffmann2

1 Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin,
Germany
2 Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany

*Corresponding author (muschik@physik.tu-berlin.de)

Abstract

Endoreversible thermodynamics is concerned with reversible sub-systems that
are in irreversible interaction with each other. Consequently, endoreversible
thermodynamics represents the analogue for discrete systems to the local
equilibrium hypothesis in continuum thermodynamics. Here a real cyclic 2-
reservoir process is simulated by di¤erent endoreversible model processes.
Simulation means that the simulating process has the same net heat ex-
changes, cycle time, power, entropy production, and e‰ciency as the original
one. By introducing process-independent simulation parameters as constraints
for the irreversible interaction, a family of comparative endoreversible pro-
cesses is generated including the simulation of the original process. This pro-
cedure allows the process parameters of the family of comparative processes
to be compared to those of the original one. The fraction ‘‘power of the real
process over the maximal power inbetween the comparative family’’ is intro-
duced as a parameter describing the process excellence.

1. Introduction

If a cyclic process is described by thermostatics, no real time appears. Thus
reversible (timeless) cyclic processes, such as the Carnot, the Joule, the Otto
and the Diesel processes [2], are idealized, quasi-processes in the equilibrium
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subspace that do not exist in nature [3]. Nevertheless, the e‰ciencies of these
‘‘processes’’ are often used for comparing them with e‰ciencies of real run-
ning processes. This procedure seems questionable; we ask whether there are
more realistic processes for comparing them with real running machines. It is
exactly this question which stood at the beginning of the development of fi-
nite time thermodynamics. Since then, a lot of progress has been made in
general non-equilibrium thermodynamics. In this paper, we turn again to the
original question and study the problem of finding these more realistic expres-
sions for the e‰ciency of irreversible heat to power conversion processes. We
will use dissipative, but still idealized processes as described in a special ther-
modynamic discipline, called endoreversible thermodynamics, which was de-
veloped in the last 20 years [4–8].

An endoreversible system is defined by a set of reversible sub-systems that in-
teract with each other irreversibly. Of course, an endoreversible machine is
still not a real running one, because it includes reversible sub-systems. But be-
cause irreversibility is modeled by the dissipative interaction of these revers-
ible subsystems, such an endoreversible machine may provide better ‘‘pro-
cesses’’ for comparing them with those of a real running machine than pure
reversible ‘‘processes’’. For the special case of 2-reservoir processes, we inves-
tigate how far this program of achieving more realistic estimations of e‰cien-
cies and other thermodynamic performance criteria of real running machines
by endoreversible ones can be carried out.

The aim of the paper is mostly conceptual. While heat engines with sev-
eral heat sources show interesting results [9, 10], cyclic 2-reservoir pro-
cesses are the most simple systems to discuss the concepts involved. For
this purpose, we recall in the second section the real cyclic 2-reservoir
processes, and we discuss the connections between entropy production, ef-
ficiency, power, and work. In the third section, we define what a simula-
tion and what a model of a real running process is. The concept of a
simulation of a real process (a simulating process) is introduced in order
to elucidate the di¤erence to a model of the real running machine. While
a simulating process by definition has the same thermodynamic exchanges
as the real one under consideration, it is unsuitable for comparison. There-
fore, a family of comparative processes is introduced by fixing the simula-
tion parameters after having chosen a special model for the real running
machine. In the following sections, we investigate di¤erent endoreversible
models for 2-reservoir processes in closed systems. These models are the
Carnot engine with a heat leak [11], the Novikov engine with two di¤erent
kinds of heat conduction, and the Novikov engine with heat leak [12, 13],
which has recently proven its ability in matching even the behavior of high-
featured engines [14].
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2. Real cyclic 2-reservoir processes

We consider two heat reservoirs (H and L) of di¤erent thermostatic (equilib-
rium) temperatures TH > TL. A real, cyclic, irreversible 2-reservoir process is
operating between these two reservoirs exchanging the heat flows _QQHðtÞ and
_QQLðtÞ with H and L, respectively. No mass and no work exchange appear be-

tween the reservoirs and the system undergoing the cyclic process. The heat
exchanges during a cycle of the cycle time t > 0 are

QH :¼
ð t

0

_QQHðtÞ dt; QL :¼
ð t

0

_QQLðtÞ dt: ð1Þ

Throughout the paper, we will consider heat to work conversion processes
that are characterized by a negative work W a0, i.e., the system delivers
work to the environment during a cycle. Therefore, the First Law for heat–
power processes states

QH þQL þW ¼ 0; W a0; ) QH b�QL > 0: ð2Þ

A thermodynamic diagram of a 2-reservoir cyclic heat–power process is
shown in Figure 1.

The entropy production per cycle S appearing in the system is given by the en-
tropy exchanges between the system and its controlling reservoirs H and L:

S :¼ �QH

TH
�QL

TL
b0: ð3Þ

According to the Second Law, the entropy production S is not negative. This
inequality represents the special form of Clausius’s inequality for 2-reservoir
systems [15]. From Eqs. (2) and (3) we obtain

1aa :¼ �QH

QL
a

TH

TL
! QH ¼ �aQL: ð4Þ

Figure 1 Thermodynamic diagram of a 2-reservoir cyclic heat–power process.
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These inequalities demonstrate that all existing processes possess an a that is
restricted by the Second Law and that is determined by QH and QL. The
equality in Eq. (3) is valid for reversible processes, for which Eq. (4) results in

arev ¼ TH

TL
ba: ð5Þ

According to Eqs. (4) and (5), all power-producing thermodynamic cyclic
processes have an a that is located in the angle between a ¼ 1 and a ¼ arev

in Figure 2. For real processes with non-vanishing heat exchanges, it is
known that arev can only be approached if t ! l, i.e., if the cycle time of
the process becomes arbitrarily long. That means that reversible processes
are idealized, not-running ‘‘processes’’ that do not exist in nature.

The e‰ciency of a 2-reservoir process is defined by [16]

0ahðaÞ :¼ �W

QH
¼ 1 þ QL

QH
¼ 1 � 1

a
a1 � TL

TH
¼: hrev; ð6Þ

and its power by

P :¼ �W

t
¼ QH

h

t
¼ PðQH; h; tÞb0: ð7Þ

Inserting Eqs. (6) and (4), the power results in

PðQL; a; tÞ ¼
QH

t
1 � 1

a

� �
¼ QL

t
ð1 � aÞ: ð8Þ

For the reversible limit t ! l, we obtain

Prev ¼ 0: ð9Þ

Figure 2 Power-producing thermodynamic cyclic processes are located between a ¼ 1 and
a ¼ arev. Di¤erent values of a characterize di¤erent cyclic processes.

296 W. Muschik and K.H. Ho¤mann

J. Non-Equilib. Thermodyn. � 2006 �Vol. 31 �No. 3

Bereitgestellt von | Technische Universität Berlin
Angemeldet

Heruntergeladen am | 10.10.18 10:51



The entropy production (3) per cycle becomes by Eqs. (3), (4), and (6)

SðQH; aÞ ¼ QH
1

aTL
� 1

TH

� �
¼ QH

TL
ðhrev � hÞ ¼ SðQH; hÞb0; ð10Þ

which yields for the reversible limit Srev ¼ 0.

Using Eq. (10) to eliminate h in Eq. (7), we obtain for the power of the
process

P ¼ 1

t
ðQHhrev � STLÞ ¼

�W

t
¼ STL

t

QHhrev

STL
� 1

� �
: ð11Þ

By use of Eq. (10) and later on of Eq. (6), this results in

P ¼ STL

t

h

hrev � h
¼ STH

t

a� 1

arev � a
: ð12Þ

The expressions for the entropy production, power, and e‰ciency derived
here will be needed later on for simulating real cyclic 2-reservoir processes.
For a more systematic elucidation, we introduce some formal tools in the
next section.

3. Machines, process class, and family

As Figure 1 shows, all real cyclic 2-reservoir processes can be described by
five quantities:

z :¼ ðTH;TL;QH;QL; tÞ aM5; ð13Þ

which span a 5-dimensional manifold. The physical meaning of the parame-
ters spanning the manifold induces some restrictions: TH > TL > 0, QH b

�QL > 0, satisfying Eq. (4) and t > 0. For arbitrary but fixed allowed values
of the quantities ðTH;TL;QH;QL; tÞ, we call z a process class and M5 the set

of all process classes. According to its definition, the process class contains all
processes having the same values for the reservoir temperatures, the heat ex-
changes, and the cycle time. That means that we concern ourselves no longer
with the particular time dependence of the heat flows during the cyclic pro-
cess, but we group together all processes having the same net exchanges to
form the process class. Concerning the net exchanges (1), all processes of a
process class are equivalent to each other.
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Later on, we have to compare di¤erent process classes belonging to the same
controlling heat reservoirs. Therefore we define the process family,

M3ðTH;TLÞ ¼ ðTH;TL; �; �; �Þ; ð14Þ

as a 3-dimensional manifold for fixed TH and TL. According to Eqs. (4) and
(6), each member of the process family can be described by di¤erent but
equivalent sets of variables:

ð�; �; �Þ ! ðQ̂QH; Q̂QL; t̂tÞ; ðQ̂QH; âa; t̂tÞ; ðQ̂QL; âa; t̂tÞ; ðQ̂QL; ĥh; t̂tÞ: ð15Þ

Here ^ denotes a variable in contrast to the arbitrary but fixed values of QH,
QL, t of the process class (13). Note that also other parameterizations in Eq.
(15) are possible using the entropy production or the power.

Each process class belongs to the process family (14)

ðTH;TL;QH;QL; tÞ a M3ðTH;TLÞ; ð16Þ

but there are members of the process family that do not belong to the process
class because of Q̂QH AQH, Q̂QL AQL and t̂tA t. Of course, the process family
(14) is a subset of the set of all process classes M5 in Eq. (13).

Real power-producing heat engine cycles are performed by machines. Exam-
ples are the many existing internal combustion engines or the turbines in
power plants. Usually these machines can operate between a variety of bath
temperatures and at di¤erent speeds. Here we restrict ourselves to the process
family (14) defined by arbitrary but fixed family parameters ðTH;TLÞ. Then a
given machine will not be able to realize all possible members of the process
family. In general, two di¤erent 2-reservoir machines (I and II ) performing
processes of equal cycle time and equal absorbed heat,

tI ¼ tII and QI
H ¼ QII

H ; but QI
L AQII

L ; ð17Þ

may have di¤erent e‰ciencies and consequently di¤erent heat exchanges at
TL. Therefore, we need for the description of special machines ‘‘constitutive
equations’’, which couple variables of the process family to each other, thus
decreasing the dimension of M3. This dependence of the variables on each
other for special machines is called a machine diagram,

QL ¼ WðQH; tÞ; or h ¼ XðQH; tÞ; a ¼ CðQL; tÞ; etc:; ð18Þ

describing individual properties of the special machine. By the machine dia-
gram, a 2-dimensional process subfamily is introduced, because one of the
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three variables of the process family (14) is determined by Eq. (18). Machine
diagrams are, e.g., fuel consumption maps of a 4-cylinder engine (Figure 3).

As Figure 3 shows, the constitutive mappings W, X, C, etc., belonging to the
2-reservoir machine are not unique in general: they are divided into branches
Wk, Xl , Cm (k, l, m are the numbers of the branches): for a fixed cycle time t
and fixed fuel supply QH, there are two possible values for the e¤ective mean
pressure (which is proportional to the work/power) in Figure 3. Conse-
quently, also two possible values for QL, a, and h follow. That means, for
fixed cycle time and fixed fuel supply, the engine can work in two di¤erent
process classes,

ðTH;TL;QH;Q
I
L; tÞA ðTH;TL;QH;Q

II
L ; tÞ ð19Þ

with di¤erent e‰ciencies.

According to Eq. (18), for special machines Eqs. (7) and (10) result in

PlðQH; tÞ ¼
QH

t
XlðQH; tÞ; SlðQH; tÞ ¼

QH

TL
½hrev � XlðQH; tÞ�; ð20Þ

depending on the branch of the constitutive mapping. We will omit this
branch index in the sequel.

Note that P and S attain their extrema for di¤erent values ðQ�
H; t

�ÞA
ðQ�

H; t
�Þ of the family variables QH and t:

Figure 3 Machine diagram for a 4-cylinder engine showing the lines of equal fuel
consumption.
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Pextr ¼ Q�
H

t�
XðQ�

H; t
�Þ; Sextr ¼ Q�

H

TL
½hrev � XðQ�

H; t
�Þ�:

This result is easy to understand: If the entropy production S is minimal, that
is according to Eq. (10) in case of a reversible process, the work �W is max-
imal according to Eq. (11),

h ¼ hrev ) S ! minimal ) �W ¼ Qrevhrev � STL ! maximal; ð21Þ

but the power P is zero due to t ! l. Consequently, if P is maximal for a
special cycle time t, S does not have an extremal value for this process. Be-
cause according to Eq. (10), the e‰ciency h is monotonously decreasing with
increasing entropy production; the statement ‘‘The higher the e‰ciency, the
greater the power’’ is wrong: e‰ciency is a process quantity that is defined
independently of the cycle time, whereas the power is not. Therefore, e‰-
ciency and cycle time are independent variables of the process family accord-
ing to Eq. (15). But for each special machine, the e‰ciency depends experi-
mentally on t according to the machine diagram (18) and Figure 3.

If a real running machine characterized by its machine diagram (18) is inves-
tigated, the question arises how ‘‘good’’ is this machine with regard to its ef-
ficiency. To answer this question, one has to compare this machine with e‰-
ciencies of other ones. But how to choose these comparing machines? Because
we do not know any specific internal structure of the 2-reservoir machines
considered in this section, we will first simulate them all by endoreversible
ones whose internal structures are known and which are models simulating
the original machine. Then we can embed each of the endoreversible models
into a specially constructed set of comparing machines whose e‰ciencies can
be compared with that of the original one, thus answering the question of its
quality.

4. Simulation and model

Now we want to simulate a process class of real cyclic 2-reservoir processes
described by Eq. (13). That means we have to replace the original cyclic pro-
cess by a special other process. Of course, this replacement is not unique: there
are many other processes simulating the original one. ‘‘Simulating’’ means that
the process replacing the original one has the same reservoir temperatures, the
same heat exchanges, and the same cycle time as the original process: simu-
lating process and original process belong to the same process class z.

For simulating, here we use processes of endoreversible systems. While en-
doreversible systems can be of nearly arbitrary complexity [6, 7], we confine
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ourselves in this paper to endoreversible systems that are a combination of
reversible Carnot engines combined with irreversible transport laws such as
the Fourier or the Newton law of heat conduction.

We are now able to define what the endoreversible simulation of a process
means:

Definition: Processes of endoreversible systems that have the same heat ex-
changes, the same cycle time, the same work and power, the same entropy
production and e‰ciency as the original process are called simulating
processes.

Endoreversible simulating processes can be performed by di¤erently com-
posed endoreversible machines. This gives rise to the following definition:

Definition: A model of a process class is a specially constructed machine un-
dergoing a simulating process with respect to the process class in consider-
ation induced by the real running original process.

By these two definitions, the distinction between simulation and model be-
comes clear: a simulation of the original process cannot be distinguished
from it by considering the exterior, because the simulating process is in the
same process class (13) as the original one. There are a lot of simulating pro-
cesses, all belonging to the same process class. These simulating processes can
be modelled totally di¤erent. Here we are using endoreversible models, but
other modelling is possible, e.g., by reversible processes.

According to Eqs. (13) and (14), each process class belongs to a process fam-
ily. But a process family is larger than the process class belonging to it. Con-
sequently, the process class is embedded in the process family, which there-
fore contains more processes than the simulating ones. This embedding of
the simulating processes into the process family makes it possible to compare
the original process (and all simulating processes) with special members of the
family that are not simulating it. We will define and discuss these compara-
tive processes in Section 6.

In the next section, we will consider several endoreversible systems, and we
will show how to construct simulation parameters for the later introduction
of comparative processes.

5. Endoreversible systems

Endoreversible machines consist of reversible subsystems that interact irre-
versibly with each other [5–7]. This irreversible interaction of the subsystems
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is the source of entropy production. Because endoreversible machines contain
by definition reversible subsystems, they are – as the reversible machines –
idealized devices not existing in nature. In this section, we consider some ex-
amples of endoreversible machines for their later use as comparative models.

5.1. Carnot engine with Fourier heat leak

The entropy production (3) can be identically transformed into

S ¼ �QH � DQ

TH
�QL þ DQ

TL
þ DQ

1

TL
� 1

TH

� �
: ð22Þ

Note that the introduced heat exchange DQ is an arbitrary one without influ-
encing the entropy production, the family parameters (14), and the heat ex-
changes (1) of the process family. The cycle time will be introduced later.

For constructing a particular endoreversible model, we choose DQ in such a
way that the sum of the first two terms on the right-hand side of Eq. (22) be-
come zero:

�QH � DQ

TH
�QL þ DQ

TL
G0: ð23Þ

We call Eq. (23) the reversibility condition because it represents Clausius’s
equality of a reversible process having the heat exchanges QH � DQ and
QL þ DQ between the system and the two controlling reservoirs of the tem-
peratures TH and TL, respectively (see Figure 4).

Taking Eq. (23) into account Eq. (22) results in

S ¼ DQ
1

TL
� 1

TH

� �
¼ �QH

TH
�QL

TL
b0 ) DQb0: ð24Þ

The reversibility condition (23) determines the heat leak, DQ, which is con-
nected to the entropy production by Eqs. (24), (10), (4)2, and (5):

Figure 4 Thermodynamic diagram of a 2-reservoir cyclic process with heat leak.
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DQ ¼ �QL
1

TL
� a

TH

� ��
1

TL
� 1

TH

� �
¼ THSðQL; aÞ

arev � 1
: ð25Þ

The heat leak DQ is called a first simulation parameter. The endoreversible
model of a real 2-reservoir process class is determined by specializing this first
simulation parameter, which is given by the reversibility condition involving
Eq. (23) or Eq. (25).

We now introduce a second simulation parameter lhl by a ‘‘constitutive equa-
tion’’ for the heat leak including the cycle time of the original process class
(13):

DQ ¼: lhlt
1

TL
� 1

TH

� �
) lhlðQL; a; tÞb0: ð26Þ

This equation looks like a Fourier heat conduction ansatz, but it is not, be-
cause Eq. (26) determines the ‘‘heat conductivity’’ lhl, which of course is not
a constant, but a function of QL, a, and t according to Eqs. (26) and (25).
From Eq. (26) follows by Eqs. (25) and (10)

lhlðQL; a; tÞ ¼
SðQL; aÞ

t 1
TL

� 1
TH

� �2
¼ �QLTHðarev � aÞ

tðarev � 1Þ2
: ð27Þ

According to Eq. (10), we obtain from Eq. (27) in the reversible case

tlhlðQL; arev; tÞ ¼ 0; ð28Þ

although t ! l is valid for reversible processes. From Eq. (26) follows in
this case

DQrev ¼ lhl
rev ¼ 0: ð29Þ

Consequently, as expected, there is no heat leak in the reversible case.

Replacing QL=t by Eq. (27)2 in Eq. (8) we obtain for the power

Pða; lhlÞ ¼ lhl 1

TH

ðarev � 1Þ2

arev � a
ða� 1Þ: ð30Þ

Now the original 2-reservoir process is simulated by an endoreversible model
consisting of the reversible part described by Eq. (23) (the right-hand part of
the diagram in Figure 4), and of an irreversible heat-conducting part, the heat
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leak (the left-hand part of the diagram in Figure 4), described by Eq. (24).
The endoreversible model undergoes the same process as the original one;
both belong to the same process class.

If we now change the original real running process, say by changing the cycle
time, then the altered process is still in the process family (14), but no longer
in the process class (13). Additionally, the original process is performed by a
special machine for which its machine diagram (18) is valid (Figure 3). Con-
sequently, the three variables in Eq. (15) are not independent of each other
according to Eq. (18), and a in Eq. (30) has to be replaced by its values
CðQL; tÞ given by the machine diagram.

5.2. Novikov engine with Fourier heat conduction

We now simulate the original 2-reservoir process family by using another en-
doreversible model, the Novikov engine [12] (see Figure 5).

The entropy production (3) is now identically transformed into

S ¼ �QH

TH
�QL

TL
¼ QH

1

Ti
� 1

TH

� �
�QH

Ti
�QL

TL
ð31Þ

by introducing Ti as the first simulation parameter. The reversibility condi-
tion for the reversible part of the endoreversible Novikov process is chosen as

�QH

Ti
�QL

TL
G0; ð32Þ

which leads to the entropy production

S ¼ QH
1

Ti
� 1

TH

� �
: ð33Þ

The first simulation parameter is thus fixed by Eq. (32):

Figure 5 Thermodynamic diagram of the Novikov process.
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1aa :¼ �QH

QL
¼ Ti

TL
) Ti bTL; Ti ¼ aTL: ð34Þ

The second simulation parameter lnp is introduced in the same fashion as in
Eq. (26) and is determined by a ‘‘constitutive equation’’:

QH ¼ lnpt
1

Ti
� 1

TH

� �
¼ �aQL; ð35Þ

lnpðQL; a; tÞ ¼ ð�aQLÞ
�

t
1

aTL
� 1

TH

� �
: ð36Þ

By Eq. (35), the entropy production (33) results in

S ¼ lnpt
1

Ti
� 1

TH

� �2

; ð37Þ

which is analogous to Eq. (27)1. The power (8) becomes by use of Eqs. (35)
and (34)3

Pða; lnpÞ ¼ lnp 1 � 1

a

� �
1

aTL
� 1

TH

� �
: ð38Þ

This expression is of course di¤erent from Eq. (30) due to the di¤erent models
for the original process, although the values of the power in Eqs. (30) and
(38) are equal to that of the original process in Eq. (7). For a special original
machine, a is given by Eq. (18)3. From Eq. (37) we obtain Eq. (9) again.

Of course, it is equally possible to use Ti as the first simulation parameter in-
stead of a. Then from Eq. (8) the power P becomes

PðTi;QHÞ ¼
QL

t
1 � að Þ ¼ �QH

at
ð1 � aÞ ¼ QH

t
1 � TL

Ti

� �
: ð39Þ

Using Eq. (35), we finally obtain

PðTi; l
npÞ ¼ lnp

TH
1 � TL

Ti

� �
TH

Ti
� 1

� �
: ð40Þ

The same result could have been directly obtained from Eq. (38), if a were
replaced by Ti=TL.
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5.3. Novikov engine with Newtonian heat conduction

We now simulate the original 2-reservoir process again by the Novikov pro-
cess [12] (see Figure 5), but this time we use a di¤erent simulation for the
‘‘heat conduction’’, the second simulation parameter. Instead of Eq. (35), we
introduce a di¤erent second simulation parameter lN by requiring

QH ¼ lNtðTH � TiÞ ) lN ¼ QH

tðTH � aTLÞ
: ð41Þ

In this case, the expression for the power (39) becomes

PðTi; l
NÞ ¼ lNTL 1 � Ti

TL

� �
1 � TH

Ti

� �
: ð42Þ

Note that the process class (13) can still be described by the new simulation
parameters lN and Ti or a. Inserting the proper values (41) and (34) for lN

and Ti still results in the original value for the power.

5.4. Novikov engine with Fourier heat leak

Another endoreversible model is the Novikov engine with heat leak (see
Figure 6). For the process performed by this engine, the decomposition of
the entropy production (3) by introducing two first simulation parameters
DQ and Ti states

S ¼ QH
1

Ti
� 1

TH

� �
þ DQ

1

TL
� 1

Ti

� �
�QH � DQ

Ti
�QL þ DQ

TL
: ð43Þ

In contrast to the preceding simulations, only one of these parameters is de-
termined by the reversibility condition:

�QH � DQ

Ti
�QL þ DQ

TL
¼ 0; ð44Þ

Figure 6 Thermodynamic diagram of a 2-reservoir Novikov engine with heat leak.
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which results in a relation between the two first simulation parameters DQ
and Ti,

DQ ¼ �QL
a

Ti
� 1

TL

� ��
1

Ti
� 1

TL

� �
: ð45Þ

The entropy production is according to Eqs. (43) and (44):

S ¼ QH
1

Ti
� 1

TH

� �
þ DQ

1

TL
� 1

Ti

� �
: ð46Þ

Hence the power (12) becomes

P ¼ 1

t
QH

1

Ti
� 1

TH

� �
þ DQ

1

TL
� 1

Ti

� �� �
a� 1
1
TL

� a
TH

: ð47Þ

Note that one of the first simulation parameters can be chosen arbitrarily be-
cause the reversibility condition (44) determines only one of them. If one of
the two the parameters is chosen, the value of the other one is adjusted in
such a way that entropy production and power are those of the original
process.

Two second simulation parameters l and k are introduced by

QH ¼ lt
1

Ti
� 1

TH

� �
; DQ ¼ kt

1

TL
� 1

Ti

� �
: ð48Þ

Both the second simulation parameters depend on Ti, QL, a, and t:

l ¼ lðQL; a; t;TiÞ; k ¼ kðQL; a; t;TiÞ: ð49Þ

By Eq. (48), the expression of the power (47) results in

Pða; k; l;TiÞ ¼ l
1

Ti
� 1

TH

� �2

þ k
1

TL
� 1

Ti

� �2
" #

a� 1
1
TL

� a
TH

: ð50Þ

As already mentioned, Ti can be chosen arbitrarily because the combination
of the quantities l, k, and Ti appearing in Eq. (50) has by construction the
restricting property that l and k change with Ti in such a way that

Pða; l; k;TiÞ ¼ PðQL; a; tÞ ð51Þ

is independent of Ti.
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In this section we discussed four endoreversible models of a general 2-
reservoir process family. Three of them, the process with heat leak and the
two Novikov processes, are endowed with two simulation parameters, one
of the first and one of the second kind, which are determined by the revers-
ibility condition and by the ‘‘constitutive equation’’ for the heat exchange.
The fourth model, the Novikov process with heat leak, has double the num-
ber of simulation parameters. Consequently, one of them can be chosen arbi-
trarily, because the reversibility condition and the two constitutive equations
determine three simulation parameters. By construction – it is a simulation –
this free choice of one simulation parameter does not influence the entropy
production and the power of the endoreversible model. How these models
can be used for constructing comparative processes with respect to the real
running process is discussed in the next section.

6. Comparative processes

In the last section, we considered simulations of the 2-reservoir process with
di¤erent endoreversible models. The di¤erent expressions for the power (7),
(11), (12), (30), (38), (42), and (50) are achieved by identical transformations,
each conserving the value of the power of the original process. Thus all en-
doreversible simulations of the last section belong to the same original 2-
reservoir process; that means, all simulations and the original process are in
the same process class.

We now raise the question again: ‘‘How e‰cient is the real 2-reservoir pro-
cess?’’ The usual answer is that the real e‰ciency h is compared with the re-
versible e‰ciency hrev in Eq. (6). This of course is a very simple procedure,
because in this way a real, irreversible process is compared with an idealized,
totally reversible one. In the light of the process family introduced at the be-
ginning, one can interpret that comparison by stating that for all processes
within the process family (14) one chooses the reversible Carnot process for
a comparison and one chooses the e‰ciency as the criterion for that compar-
ison. From the point of view of obtaining a ‘‘good’’ comparison process, this
seems rather bold as all the many di¤erent processes (and remember, each is
a whole process class) with di¤erent heat exchanges are lumped together. The
reason for using the Carnot e‰ciency nonetheless is that one can be sure that
the e‰ciencies of all the di¤erent members of the process family are bounded
by the Carnot e‰ciency.

We will now discuss the question whether there are special processes, although
they are also idealized and not running in nature, which are more suitable for
comparison with real processes. Because the process class (13) is embedded in
the appertaining process family (14), the idea arises to compare the e‰ciency
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of the original process (and therefore of the process class) with members of a
specially constructed subfamily within the process family. The price one has
to pay for a more suitable comparison will be the loss of the guaranteed in-
equality mentioned above. We will demonstrate that the subfamilies suggested
will give di¤erent answers, and it remains an act of physical wisdom to
choose a proper comparison family.

In the preceding section, we introduced a first and a second simulation pa-
rameter. The first one is defined by the reversibility condition, the second sim-
ulation parameter by the process class. Changing the process class will alter
the second simulation parameter. We now choose an arbitrary but fixed pro-
cess class (13) by which the value of the second simulation parameter, e.g.,
Eq. (26), is fixed. Then we embed the process class into a subfamily of the
process family. The subfamily is generated by the restriction that all members
of this subfamily possess the same value of the second simulation parameter
of the embedded process class:

l̂lðcQLQL; âa; t̂tÞ ¼ l� :¼ lðQL; a; tÞ ¼ const: ð52Þ

Here ðcQLQL; âa; t̂tÞ are variables of the process family according to Eq. (15),
whereas ðQL; a; tÞ are fixed by the process class. Now we can define the com-
parative processes as follows:

Definition: The subfamily ðTH ;TL; cQLQL; âa; t̂tÞ generated by a constant second
simulation parameter (52) induced by the chosen process class ðTH ;TL;QL;
a; tÞ is called the family of comparative processes.

We compare quantities that belong to the original process with the same
quantities of the comparative family. But nothing is said about the e¤ective-
ness of this procedure, because for constructing the comparative family, here
the ‘‘heat conductivities’’ are chosen to be constant (which is by no means
strict, but is practiced by many people; see [6] for more details). This proce-
dure shows the arbitrariness of finding a comparative family. But there is no
other way to get rid of the reversible processes as comparative ones: simula-
tion of the original process by models of the same process class and its exten-
sion to a process family for comparison.

A short remark of the concept of ‘‘model’’ is necessary: here the endoreversi-
ble models used in the preceding sections were used for simulating one special
process class; that means, one special process of the original real running ma-
chine was simulated. Another process of the same machine belongs to an-
other process class, was simulated by the same model, but with di¤erent sim-
ulation parameters. Because the values of the simulation parameters depend
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on the special process of the real running machine, the same models for sim-
ulation have di¤erent ‘‘constitutive properties’’.

But often the concept of ‘‘model’’ is used in another context: One model with
fixed constitutive properties, here with fixed simulation parameters, should
map all possible processes of the real running machine and not the only one
in the process class. That means that the machine diagrams of the real run-
ning machine and that of the model should be identical, because otherwise
the ‘‘model’’ is not a model. But most of the endoreversible models do not
satisfy this additional restriction, as we easily can see: for the Novikov pro-
cess with Fourier heat conduction (Section 5.2), we obtain from Eqs. (35)
and (34):

QH ¼ l�t
1

aTL
� 1

TH

� �
; ð53Þ

with a fixed value l� for all possible processes of the real running machine.
From this we get

1

a
¼ QH

l�t
þ TL

TH

; ð54Þ

and consequently, by Eq. (6),

h ¼ hrev �
QHTL

l�t
ð55Þ

follows. All real machine diagrams have experimentally the property that
there is a fuel supply Q

y
H and a cycle time ty for which the e‰ciency is maxi-

mal. From Eq. (55), we obtain for constant l�

qh

qt

����t¼ty

QH¼Q
y
H

¼ Q
y
HTL

l�ty2
G0; ð56Þ

qh

qQH

����t¼ty

QH¼Q
y
H

¼ � TL

l�ty
G0: ð57Þ

The only solution is

ðl� ! lÞ4ðty ! lÞ; ð58Þ

describing the reversible limit according to Eq. (55) in which the power out-
put vanishes according to Eqs. (38) or (39). Consequently, the model of a
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Novikov engine with Fourier heat conduction having the same constant
‘‘heat conductivities’’ for all possible process classes of the real running ma-
chine does not catch the reality, because it does not model the real machine
diagram. The ‘‘heat conductivities’’ are only simulation parameters for con-
structing a comparative process family belonging to a single process class.

We now discuss the comparative processes for the simulations and models in-
troduced above.

6.1. Carnot engine with a Fourier heat leak

The e‰ciency of a real process described by QH, QL, t is to be compared to
the e‰ciency of a Carnot engine with a Fourier heat leak. To be precise, we
choose the adequate value for the heat conductance l� by using Eq. (27) as a
constraint for a process subfamily

l�t
1

TL
� 1

TH

� �2

¼ �QL
1

TL
� a

TH

� �
: ð59Þ

Then we consider the power (30) for the given constant value l� according to
Eq. (52):

Pða; l�Þ ¼ l�
1

TL
� 1

TH

� �2

ða� 1Þ
�

1

TL
� a

TH

� �
; ð60Þ

and ask: ‘‘What is the process with the highest power in this subfamily?’’ This
process is determined by varying a within its bounds for constant second sim-
ulation parameter l� looking for the maximal power. Equation (60) shows
that there is no internal extremum in a. The power diverges as a approaches
its boundary value a ¼ TH=TL, which represents the reversible case. This is
physically unrealistic because of Eq. (59), which represents a machine dia-
gram according to Eq. (18)3: In the reversible limit, Eq. (59) results in t ¼ 0
inducing the unlimited power. But we know that t ! l is valid in the revers-
ible case. Consequently, the machine diagram and therefore the Carnot en-
gine with Fourier heat leak is not a suitable model for simulation. This will
be di¤erent for the models discussed below.

6.2. Novikov engine with Fourier heat conduction

The same procedure we used in the last section is now applied to the Novikov
model. The constraint for the comparative processes in that case is chosen by
using the value of l� from Eq. (36):
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l�t
1

aTL
� 1

TH

� �
¼ �aQL: ð61Þ

This relation represents a machine diagram (18), reducing the number of in-
dependent variables in Eq. (15) to 2.

Now we have to look for the maximum of the power (38). An easy calcula-
tion results in

qP

qa

����
l

¼ 0 ) aPmax
¼ 2

1 þ TL

TH

: ð62Þ

Note that due to the equivalence between a and Ti, the equivalent calculation
looking for the maximum of P by varying Ti leads to the same result.

According to Eq. (6), we obtain for the e‰ciency belonging to the maximum
power of the comparative Novikov process

hN:F ¼ 1

2
hrev; ð63Þ

a result that is independent of the special value of l� in Eq. (61). Because it
also does not depend on the variables (15), this result is independent of the
process class belonging to the original process. That means the comparative
Novikov family characterized by Eq. (61) is a universal one, because of its
independence of the special process class. The comparative processes in the
Novikov model described by a fixed heat conductivity have their maximum
power output for an e‰ciency (63) that is rather low. Again we stress that
there are real processes running with a greater e‰ciency than ð1=2Þhrev, but
with less than maximal power output. Again we see that the e‰ciency is not
a suitable measure for power output. Therefore we are looking for such a
measure.

We now introduce the power comparison coe‰cient (PCC):

PðhÞ :¼ P

Pmax
: ð64Þ

By Eq. (6), we obtain

Pða; lnpÞ ¼ lnph
1

aTL

� 1

TH

� �
; ð65Þ

P̂PmaxðâaPmax; l�Þ ¼ l�ĥhPmax 1

âaPmaxTL

� 1

TH

� �
; lnpGl�: ð66Þ
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Here ĥhPmax is given by Eq. (63) and

1

aTL

� 1

TH

¼ TH � TL � hTH

TLTH

¼ 1

TL

ðhrev � hÞ ð67Þ

is valid. Inserting Eq. (63), this results in

1

âaPmaxTL

� 1

TH

¼ ðTH � TLÞ
2TLTH

¼ hrev

2TL

: ð68Þ

From Eqs. (65) and (66) follows after a short calculation

PðhÞ ¼ 4
h

hrev
1 � h

hrev

� �
: ð69Þ

A short calculation confirms the following inequalities for the PCC to hold:

0aPa1; ð70Þ

Pb
h

hrev
a

1

2
; Pa

h

hrev
b

1

2
: ð71Þ

The PCC may be a better coe‰cient than h=hrev for estimating real running
machines. According to Eq. (71), the quotient h=hrev is too ‘‘optimistic’’, if
h=hrevb0:5, and too ‘‘pessimistic’’, h=hreva0:5.

6.3. Novikov engine with Newtonian heat conduction

In this section, we study a di¤erent subfamily of comparing processes all
characterized by the same second simulation parameter lN. Maximizing the
power (42)

PðTi; l
NÞ ¼ lNTL 1 � Ti

TL

� �
1 � TH

Ti

� �
ð72Þ

with respect to Ti yields an internal maximum for T 2
i ¼ TLTH, which results

in the well-known Curzon–Ahlborn e‰ciency:

hN:N ¼ hCA ¼ 1 � TL

TH

� �1=2

: ð73Þ

One very interesting feature of this result as well as of that of the previous
section is that the e‰ciency at maximum power does not depend on the value
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chosen for l. This gives the result a much wider application than anticipated:
in both cases, the e‰ciency obtained can be used as comparison measure for
all members of the process family (14) and not only for the one with the par-
ticular l chosen for the simulating process.

6.4. Novikov process with a Fourier heat leak

As already mentioned in the section where the model was introduced, the ex-
istence of two first and of two second simulation parameters gives an addi-
tional degree of freedom. This degree of freedom makes it impossible to use
the same technique in fixing the simulation parameter as in the previous sec-
tions. We thus proceed a little di¤erently: We introduce a subfamily of pro-
cesses that are characterized by a certain machine diagram depending on the
variables Ti, l, and k.

The reversibility condition

�QH � DQ

Ti
�QL þ DQ

TL
¼ 0 ð74Þ

allows determining QL as a function of Ti, QH, and DQ:

QL ¼ �TL

Ti
QH � DQ 1 � TL

Ti

� �
: ð75Þ

Inserting the defining equation (51)

QH ¼ lt
1

Ti
� 1

TH

� �
; DQ ¼ kt

1

TL
� 1

Ti

� �
ð76Þ

for both the second simulation parameters, we obtain the power

P ¼ 1

TL
� 1

Ti

� �
l

1

Ti
� 1

TH

� �
� k

1

TL
� 1

Ti

� �� �
: ð77Þ

Its interpretation is easy: from QH (76) one subtracts the heat DQ bypassing
the inner Carnot engine, multiplies it with the e‰ciency of the Carnot engine,
and divides by t. Now the engine parameters l and k are again chosen from
the original process. Within this process family, we look for the process with
the highest power output. Di¤erentiating Eq. (77) with respect to Ti leads to
an optimal temperature
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T
opt
i ¼ 2ðlþ kÞ

l 1
TL

þ 1
TH

� �
þ 2 k

TL

: ð78Þ

The e‰ciency at maximum power is

h
opt
N:FHL ¼ 1 � TL

TH

� �
l

2lþ 4k
¼ 1

2
hrev

1

1 þ 2 k
l

<
1

2
hrev: ð79Þ

We see that the e‰ciency is always below the e‰ciency at maximum power
for the Novikov engine with Fourier heat conduction due to the additional
loss occurring in the heat leak.

7. Discussion

For a given 2-reservoir real running heat to power conversion process, we in-
troduced four di¤erent endoreversible models for simulating the conversion
process. This procedure is di¤erent from that found in the literature: here
the idealized (in nature not running) endoreversible processes are directly
connected to real running processes by simulating them. By this simulation,
the machine parameters of the endoreversible models (the first simulation pa-
rameter ‘‘heat leak’’ and the second simulation parameter ‘‘heat conductiv-
ity’’) are determined by the real running process, and consequently, they can-
not be chosen freely, as it is often assumed in the literature.

Fixing the machine parameters by the simulation procedure, we obtain a
model-dependent family of comparative endoreversible processes, and we
showed how these can be used as a basis for comparing e‰ciencies of dissipa-
tive thermodynamic processes. Apart from the Carnot engine with heat leak,
the basis for the comparison were the e‰ciencies at maximum power of the
respective model. This seems to be a reasonable basis, as usually heat to
power conversion devices are intended to provide as much power as possible
due to the investment made. Of course, in real power stations this is balanced
with e‰ciencies obtained on an economical basis.

The e‰ciency comparison at maximum power yields di¤erent expressions for
the e‰ciencies depending on the chosen model and on the temperature ratio
TL=TH. This is due to the di¤erent structure (machine diagram) of the models.
However, we note that for temperature ratios TL=TH above 0.5 the di¤erence
is less than 10 percentage points apart from the Carnot e‰ciency. Thus one
finds that whatever model is used, the suggested value for the e‰ciency is
close to the proper range.

Interestingly, the e‰ciencies of the first three models discussed above do not
depend on the special values chosen for the machine parameters. This is
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di¤erent for the last model, for which the values of the machine parameters
will depend on the special considered process class z. The reason for that de-
pendence is that there are more machine parameters than those that can be
fixed by simulation. Generically, a real machine with its machine diagram is
characterized by a subfamily of the process family M3ðTH;TLÞ. Here one of
its many process classes z is used to choose particular simulation parameters
from which e‰ciency and power output now depend.

Nonetheless, it remains an open question which of the models might be more
appropriate for the given original process. At the level of knowledge available
about that process, such a question cannot be decided. One would need more
information for instance about the major loss terms in the process under con-
sideration, such that the structure of the chosen model captures the most es-
sential loss terms. While this seems obvious, there remains nonetheless the
fact that the Carnot e‰ciency used as a guide to possible e‰ciencies of heat
to power conversion processes su¤ers from the same defects. Thus one cannot
stress enough the point that the Carnot e‰ciency provides a bound to the ef-
ficiencies of real processes, but should not be mistaken as a good guide to the
achievable values of a real process.

While our considerations here are confined to heat engines, the conceptual
approach described above can be used as well for analyzing other thermody-
namic processes such as distillation [17, 18], photovoltaics [19, 8], or chemi-
cally driven engines [20].

In the future, we thus need to undertake further research activities to define
more sensible simulation models for irreversible processes that are connected
to the main dissipative loss features of the process under consideration. We
regard the question raised at the beginning of finite-time thermodynamics as
still being open. The problem of constructing generic comparison processes
by coupling them to properties of a real given process is yet to be solved in a
more satisfactory fashion.
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